Simulation description

The goal of the simulation was to find optimal plasticity for different values of the environmental cue received at time 1 (C_1). The value of C_1 was varied from −4 to +4 in 100 steps of 0.08 each. Individual plasticity (P) was varied from 0 to 1.5 in 75 steps of 0.02 each. For each combination of C_1 and P, environmental states at time 1, 2, and 3, and environmental cues at time 2, were generated stochastically for 10,000 individuals as described by Eq. 1-4.

The true state of the environment at time 1 (E_1) was computed as

$$E_1 = r_c C_1 + X_1$$ \hspace{1cm} (Eq. 1)\]

where r_c is cue reliability and X_1 is a normally distributed random variable with mean = 0 and variance = 1. As a result, environmental states were also normally distributed, with mean = $r_c C_1$ and variance = 1.

The true environmental state at time 2 (E_2) was computed as

$$E_2 = \sqrt{r_E} E_1 + (1 - r_E) X_2$$ \hspace{1cm} (Eq. 2)\]

where r_E is a parameter quantifying environmental stability and X_2 is a normally distributed random variable with mean = 0 and variance = 1. This ensures that environmental states at time 2 also have variance = 1. Note that r_E is defined as the autocorrelation between environmental states at time 1 and time 3 (see Figure 2 in the main article); accordingly, the autocorrelation between E_1 and E_2 and that between E_2 and E_3 are both set to $\sqrt{r_E}$.

The environmental cue received at time 2 and the true environmental state at time 3 (E_3) were computed as

$$C_2 = r_c E_2 + (1 - r_c^2) X_3$$ \hspace{1cm} (Eq. 3)\]

and

$$E_3 = \sqrt{r_E} E_2 + (1 - r_E) X_4$$ \hspace{1cm} (Eq. 4)\]

where X_3 and X_4 are normally distributed with mean = 0 and variance = 1.

For each simulated individual, the adult phenotype (A) was determined by a crossover interaction between plasticity and the cue received at time 2 (C_2):
\[A = PC_2. \] \hspace{1cm} (Eq. 5)

The crossover point (i.e., the point at which reaction norms with different plasticity cross) corresponds to \(C_2 = 0 \).

Individual fitness \((W) \) was computed with a Gaussian fitness function with mean \(E_3 \) and standard deviation \(= 2 \), as follows:

\[
W = \frac{1}{2\sqrt{2\pi}} e^{\frac{(A-E_3)^2}{16}}. \hspace{1cm} (Eq. 6)
\]

In Eq. 6, fitness is maximized when the adult phenotype matches the state of the environment at time 3 (i.e., when \(A = E_3 \)). A standard deviation of 2 for the fitness function was chosen to ensure a gradual fitness decline over the range of simulated environmental states (Figure A1). However, the qualitative results of the simulation were not affected by the exact value of this parameter.

![Fitness function for different values of the adult phenotype.](image)

\(Figure \ A1. \) Fitness function for different values of the adult phenotype. \(A = \) adult phenotype; \(E_3 = \) environmental state at time 3; \(W = \) fitness.

For each combination of \(C_1 \) and \(P \), expected fitness was computed as the average fitness \((\bar{W}) \) of the 10,000 simulated individuals. Finally, the optimal level of plasticity \((P^*) \) was determined for each value of \(C_1 \) as the value of \(P \) with the maximum expected fitness.

The simulation was performed in RTM 2.15 (R Core Team, 2012. \textit{R: A language and environment for statistical computing}. R Foundation for Statistical Computing, Vienna, Austria).