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Abstract

Jünger et al. (2018) conducted a preregistered study examining whether women particularly prefer 

muscular bodies when conceptive in their cycles. Despite an impressive number of participants and 

within-woman observations, they found no evidence for a preference shift; rather, they claimed, 

conceptive women find all male bodies more attractive. We preregistered a separate study very similar 

to Jünger et al.’s, with specified analyses focusing on shifts associated with joint additive effects of log-

transformed estradiol and progesterone (ln(E/P)). We performed similar analyses on Jünger et al.’s 

publicly available data, using an empirically vetted (though not preregistered) measure of 

Strength/Muscularity. They revealed a ln(E/P) × Strength/Muscularity × Relationship Status 

interaction effect on sexual attraction. The ln(E/P) × Strength/Muscularity interaction ran in opposite 

directions for partnered and single women effects largely driven by P levels. Jünger et al.’s null 

conclusions and claims about general preferences are premature. We offer several observations 

regarding preregistered analyses.
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1.  Introduction

1.1  Cycle shifts

Do women’s sexual interests change across the ovulatory cycle? If so, how? These questions 

have received tremendous attention over the past two decades. Findings converge on some answers. On 

average, during the peri-ovulatory phase, women become increasingly interested in sex and sensitive to 

stimuli evoking sexual motivation (e.g., Roney & Simmons, 2013; Arslan et al., in press; Jones et al., 

2018a)—shifts likely mediated by changes in ovarian hormone levels (estradiol and progesterone; e.g., 

Roney & Simmons, 2013, found that, with ovarian hormone levels controlled, there was no significant 

residual effect of estimated conception risk). In other respects, answers remain elusive and theoretical 

issues unresolved. E.g., do partnered women become especially more attracted to men other than 

primary partners during the peri-ovulatory phase (e.g., Grebe et al., 2016), or are increases in sexual 

attraction to both primary partners and other men similar (e.g., Roney & Simmons, 2016; Jones et al., 

2018b; see also Dinh et al., 2017)?

A domain producing inconsistent results concerns mate preferences. Do women become 

increasingly attracted to some men, but not others, during the peri-ovulatory phase? Two meta-

analyses of a sizable literature offer contrasting conclusions: one revealed an overall increase in 

attraction to a targeted set of male features during the peri-ovulatory phase (male facial masculinity, 

body masculinity, vocal masculinity, scent associated with developmental stability, features associated 

with greater male testosterone; Gildersleeve et al., 2014a); the other detected no such effects (Wood et 

al., 2014; cf. Gildersleeve et al., 2014b). 
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Based on additional meta-analytic analyses, Gangestad et al. (2018a) proposed that shifts in 

preferences may exist for some features (e.g., behavioral intrasexual competitiveness) but not others 

(e.g., facial masculinity, facial symmetry; see also Jones et al., 2018). Still, they emphasize, more research 

is needed. Among promising candidates for cycle shifts are preferences for muscular features. Jünger et 

al. (2018; hereafter, Jünger et al.) empirically tested this possibility, as reported in Evolution and 

Human Behavior.

Jünger et al.’s study is truly impressive. Naturally ovulating women’s preferences (N = 157) 

were assessed across four lab sessions and two cycles: twice during the peri-ovulatory phase, twice 

during the luteal phase. Peri-ovulatory status was assessed by luteinizing hormone (LH) tests (~90% 

positive). Women evaluated 80 digitally scanned male bodies represented in a rotating 3D format, 

stripped of distractions such as skin tone and heads. Steroid hormone levels, including estradiol and 

progesterone, were measured in saliva collected during every session.

Jünger et al. examined changes in women’s preferences for 6 male features argued to reflect 

muscularity/masculinity (see below), plus height; multilevel regression analyses failed to detect 

preference shifts across conceptive and non-conceptive phases for any of these features. The authors 

conclude, “Contrary to previously reported findings, men’s masculine body characteristics did not 

interact with cycle phase to predict sexual attractiveness, indicating no shifts in preferences for specific 

traits” (p. XXX; emphasis added). Instead, Jünger et al. emphasized a generalized cycle shift: in the peri-

ovulatory phase, women rated all male bodies as more attractive on average—both as sex partners and 

long-term mates, and regardless of bodily features. Jünger et al. argue that this shift—highly robust in 

their analyses—is fully carried by partnered (vs. single) women. 
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1.2 Preregistration

One additional element of Jünger et al.’s study is important: They preregistered their study on 

a public open science site (Open Science Framework; osf.org). Hence, the hypotheses, study design, 

recruitment strategies, data-collection stopping rules, and data analytic strategies were planned out 

ahead of time and “announced.” In light of psychology’s replication crisis (e.g., Open Science 

Collaboration, 2015), for many scholars, this feature warranties the study’s other admirable qualities. 

When unconstrained by a pre-announced plan, researchers have data analytic degrees of freedom (e.g., 

Simmons et al., 2011). They may even modify, post hoc, the precise hypotheses tested to permit 

reporting of “positive” results (e.g., Gelman & Loken, 2013). While researchers may sincerely seek to 

understand their data through these practices (Simmons et al., 2011), the effects are insidious. False-

positive rates and estimates of effects become inflated, hence littering the literature with non-replicable 

findings. Indeed, some scholars argue that these practices explain why some mate preference shifts have 

not replicated (e.g., Harris et al., 2014). 

Preregistration clearly serves a valuable function: By closing out researcher degrees of freedom, 

it controls α, the false-positive rate. By itself, however, preregistration does not guarantee meaningful 

results. Scholars must critically evaluate how results speak to theory, given how predictions were 

derived and analyses conducted. A non-controversial example makes the point: If a study design 

confounds a predictor variable with another variable, associations with the predictor remain 

ambiguously interpretable, regardless of whether the design is preregistered. In recognition of this 

point, some leading journals in psychology (e.g., Psychological Science [Lindsay, 2017]; Journal of 

Personality and Social Psychology) agree to report the results of a preregistered replication study, 
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contingent on the preregistration passing stringent review prior to data collection. (See, e.g., 

https://cos.io/rr/.) A more basic question is whether preregistration should constrain authors to 

disregard additional evidence contradicting the findings of planned analyses.

1.3 The current paper

The current paper presents a critique and reanalysis of data from Jünger et al.’s published 

study. Some of us recently preregistered a study very similar to Jünger et al.’s, with detailed analyses 

that differ, in important ways, from Jünger et al.’s. While Jünger et al. focused on preference shifts 

according to cycle phase—which implies that hormonal mediators could be responsible—our analysis 

focuses directly on ovarian hormones as predictors of attraction to muscular features. We also address 

several confounds suggested by the outcomes of their data analysis. Thanks to Jünger et al.’s open data 

sharing, we were able to perform these analyses on their publicly available data. Empirical patterns 

contrast, in some ways sharply, with their claims. We explain how and why results importantly differ 

and can lead to different conclusions. Additionally, we illustrate broader points regarding 

preregistration with this study as example.

2. Jünger et al.’s Analyses

In a general manner, Jünger et al.’s preregistration states hypotheses to be tested and suggests 

variables to be included in hypothesis tests. Specific statistical models, however, were absent from the 

preregistered document. Under “Statistical Models” of their online preregistration, Jünger and Penke 

(2016) write, 

Data will be analyzed using full-data multilevel modelling and lens models (Nestler & Back, 

2013), … [S]exual and long-term attractiveness ratings serve as outcomes. The ovulatory cycle 
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phase, measured steroid hormones, relationship status, LH ovulation test significance, 

personality traits, all cues specified in the hypotheses, latent variables as well as the relationship 

between hair hormone levels and average saliva hormone levels within and between women, 

will serve as predictors. [p. 7]1 

A second paragraph lists confounding variables to be controlled. But substantial room for analytic 

flexibility remains (e.g., the preregistration itself does not specify how hormonal mediation will be 

evaluated). We describe the analytical decisions Jünger et al. presented.

Analysis of within-cycle shifts based on LH tests. In their preregistration, Jünger and Penke 

(2016) state, “Previous research has documented ovulatory cycle shifts in naturally cycling women that 

are assumed to be regulated by steroid hormonal changes (primarily by estradiol and progesterone)” (p. 

3). As emphasized in their preregistration, key research questions addressed by their study were “Do 

naturally cycling women evaluate men differently for short-term relationships in their fertile window, 

relative to their non-fertile days? Do ovulatory cycle shifts on females’ preferences of men’s body 

masculinity, voice masculinity and socially flirtatious behavior exist?” and “Are menstrual cycle shifts 

in preferences mediated by changes in steroid hormones?” (Jünger & Penke, 2016, p. 3) They hence 

preregistered the hypotheses that “naturally cycling women in their fertile window, compared to their 

luteal phase, evaluate masculine stimuli (bodies, […]) as more attractive for short-term relationships”, 

and that “the effect is mediated by a high estradiol and a low progesterone level” (p. 4). Hormone 

levels, if functioning as mediators, should predict changes in women’s psychological states across the 

1 Hypotheses not tested by Jünger et al. correspond to mentions of lens models and hair hormones.
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cycle better than estimated conception risk does—meaning analyses using hormonal predictors should 

have greater power. But despite having E and P levels available, Jünger et al. did not examine hormonal 

associations with preferences. Instead, they used estimated cycle phase as a predictor.2

Six male features putatively reflecting upper-body strength plus height. Jünger and Penke 

(2016) specifically preregistered the hypothesis that, when conceptive in their cycles, women will 

experience increased attraction to “visual cues of upper-body strength (e.g. shoulder-chest ratio, 

shoulder-hip ration [sic], upper-torso volume relative to lower-torso volume, upper arm circumference 

controlling for BMI)” (pp. 4-5; emphasis added). In addition to these 4 visual cues, Jünger and Penke 

(2016) preregistered hypotheses regarding preference shifts for physical strength, assessed in-lab, and 

male baseline testosterone level. They also preregistered the hypothesis that, when conceptive, women 

prefer taller male bodies. At the same time, Jünger et al. offered no evidence or justification for how 

features reflected upper body strength. 

Simultaneous entry. In multilevel analyses, Jünger et al. regressed male sexual attractiveness on 

main effects for the 6 features and height, plus interactions between the features and cycle phase (see 

2 Of course, physiological signals other than estradiol and progesterone could, in principle, be responsible for effects across 
conceptive and non-conceptive phases. Yet (a) no evidence points to particular candidates (see, e.g., Roney & Simmons, 
2013, 2017, who found that, after estradiol and progesterone levels were controlled, cycle phase had no effect on sexual desire 
and food intake, respectively), and (b) Jünger and Penke (2016) did not preregister any other candidates, or suggest “partial” 
mediation by steroid hormones; the sole mediators they preregistered were steroid hormones. Indeed, the title of their 
preregistration was “The effects of ovulatory cycle shifts in steroid hormones on female mate preferences…” (emphasis 
added).

In a review of this commentary, Lars Penke, along with Julia Jünger and Ruben Arslan, claimed that this hypothesis 
concerning mediation by estradiol and progesterone only referred to main effects of cycle phase. They claimed that the 
hypothesis had nothing to do with preferences for masculine stimuli and, hence, the hormonal mediation hypothesis had 
nothing to do with preferences. We refer readers to supplementary online materials (SOM, section 26) for in-depth 
discussion of reasons why these claims about their preregistration are problematic.  
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their Table 2). The 7 interaction terms constituted tests of cycle shifts: Cycle Phase × Strength, Cycle 

Phase × Arm Circumference, Cycle Phase × SHR, etc. None were statistically robust.3 

It would be surprising if putative indicators of upper body strength did not covary. In Jünger 

et al.’s data, shoulder-to-chest ratio and shoulder-to-hip ratio covary strongly, probably because both 

variables share shoulder breadth as the numerator, r = .64. Strength and upper arm circumference also 

covary: r = .50. These indicators tap a common factor, unsurprisingly: muscular upper arms contribute 

to upper-body strength. If two interaction terms to assess preference shifts are entered—Cycle Phase × 

Strength and Cycle Phase × Arm Circumference—the analysis can only detect shifts in preference 

uniquely associated with each feature, independent of the other (i.e., strength holding arm 

circumference constant, arm circumference holding strength constant; Kutner et al., 2004). 

Accordingly, the analysis is not especially sensitive to detecting shifts in preferences for the common 

factor. Suppose, for instance, a common factor generates a correlation of .5 between two equally-valid 

indicators, and an outcome covaries with the common factor. If power to detect an association of the 

outcome with a composite measure is 80% in a multiple regression, power to detect an association with 

an individual measure is just 29%.4  In footnoted follow-up analyses, Jünger et al. regressed attraction 

on each male feature and its interaction with cycle phase individually, which they presented in 

supplementary online materials (SOM).

3 They regressed women’s rated attraction for long-term relationships on male features too, but their primary preregistered 
hypothesis concerned sexual attraction.
4 We assessed this in G*Power across true correlations of the common factor with an outcome ranging from .15 to .35; a 
near-identical drop in power occurred.
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Control for main effects of a confounding feature (BMI). Some “muscular” features highly 

covary with confounding non-muscular (indeed, unattractive) features. Most notably, r between 

bodies’ upper arm circumference and body mass index (BMI) is .77. Men with well-developed 

musculature possess large upper arms, but so too do men with large fat depots. Arm circumference as a 

measure of muscularity, then, is contaminated by associations with fat. Strength too covaried with 

BMI, r = .42. Accordingly, Jünger et al. controlled for the main effect of BMI in analyses, which did not 

affect results. 

However, Jünger et al. did not control for BMI confounding with preference shifts. Entering 

the main effect of BMI eliminates nuisance variance in attractiveness associated with BMI, by 

separating out BMI’s confounding effects from a male feature’s main effect. Yet it does nothing to 

control for BMI confounding with the primary effects of interest, those reflecting preference shifts. A 

Cycle Phase × Male Feature interaction is not confounded with the main effect of BMI; it is 

confounded with Cycle Phase × BMI. To fully control for these confounds, then, one must include a 

set of interaction terms with BMI paralleling interaction terms with a male feature. Alternatively, one 

can regress the male feature on BMI and compute residual scores, unconfounded with BMI, and use 

those in place of the male feature in analyses. As we quoted earlier, Jünger and Penke’s (2016) explicitly 

preregistered a measure of “upper arm circumference controlling for BMI” (p. 4). That description 

implies a measure of residuals of upper arm circumference, with BMI controlled. Yet Jünger et al.’s 

analyses did not use this measure.

Consideration of relationship status. Jünger and Penke (2016) preregistered the hypothesis that 

“Cycle phase shifts in preferences for short-term mates are larger for partnered women than for single 
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women” (p. 7; see also Hypothesis 4a, Jünger et al.; see, e.g., Havlicek et al., 2005, cited by Jünger et al.). 

Statistically, analyses testing this hypothesis may examine whether Cycle Phase × Male Feature 

interactions are moderated—i.e., whether 3-way interactions exist: Cycle Phase × Strength × 

Relationship Status, Cycle Phase × Arm Circumference × Relationship Status, etc. But these analyses 

were not performed. Once Jünger et al. identified their primary positive finding from initial analyses—

main effects of Cycle Phase on attraction—they dropped interaction terms involving male features. 

They only examined the role of relationship status, then, by assessing whether it moderates these main 

effects of cycle phase—e.g., whether Cycle Phase × Relationship Status effects are robust. Again, they 

argued yes. They did not examine whether relationship status moderates cycle shifts in preferences for 

male features—a key preregistered question of interest.

Summary. Jünger et al. made a number of analytic choices that can be reasonably debated. In 

particular, they chose four putative visual cues of upper-body strength without checking if they 

actually reflected strength, and—in their main analysis—entered them simultaneously as predictors 

(together with physical strength measured in the lab, testosterone, and height); this amounts to testing 

the unique effects of each feature, net of the common factor they were supposed to index (i.e., upper 

body strength). In addition, they deviated from their pre-registration in three ways. First, they only 

analyzed within-cycle preference shifts based on conceptive status (fertile vs. non-fertile) assessed with 

LH tests, despite having hypothesized that the effects would be mediated by estrogen and/or 

progesterone and having listed those variables in the pre-registration. Second, they did not control for 

the confounding effects of BMI on preference shifts for cues of upper body strength; this would have 

required including interaction terms in addition to the main effects of BMI. Third, they pre-registered 
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the hypothesis of a 3-way interaction between cycle phase, upper body strength, and relationship 

status, but did not test this hypothesis in their analysis. 

3. Alternative Analyses

Gangestad et al. (2018b) preregistered a now-ongoing study with similar study design features 

as in Jünger et al. (See https://osf.io/kd5j7/.) Women (N = ~250) arrive for 4 lab session assessments. 

They rate the sexual attractiveness of male bodies on multiple occasions. Peri-ovulatory sessions will be 

confirmed with LH tests. On the day of each session, women’s biological samples will be collected for 

ovarian hormone assays. In several respects, however, our preregistered analysis plan differs from 

Jünger et al.’s, and in ways that pertain to our criticisms of their analyses.5

Primary analyses concern hormonal associations. Jünger et al. chose to focus primary analyses 

on session type (fertile vs. non-fertile), based on scheduling (using counting methods) and LH testing. 

By contrast, our primary analyses will examine associations with hormone levels. The reason is 

straightforward: If hormone levels drive variations across the cycle, as researchers commonly believe 

(e.g., Roney & Simmons, 2013) and Jünger and Penke (2016) preregistered, hormones should predict 

outcomes more strongly than conceptive status does. Even among healthy women of prime 

reproductive age, relative levels of ovarian hormones vary considerably across women and across cycles 

within the same woman, which moderate the likelihood that ovulation or conception will occur 

5 This preregistration was finalized and submitted to Open Science Framework on April 18, 2018. It was originally 
submitted for review to a journal (for purposes of a preregistered publication) in early February 2018. Jünger et al.’s data was 
made publicly available in January 2018, and we downloaded their data in mid-March 2018. Our preregistration (including 
fundamental priority of hormonal predictors, and treatment of all hormone levels, e.g., log-transforming the E/P ratio and 
using it as a primary predictor) follows a plan described in a grant proposal submitted to (January 2017) and ultimately 
funded (August 2017) by National Science Foundation. 
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(Ellison, 2003; Lipson & Ellison, 1996). The regularity of menstrual cycles is not a guarantee of 

conceptive cycles. Even when precisely determined, the equivalent cycle day may have a dramatically 

different hormonal output (Ellison, 1993). And notably, women’s days of participation within specific 

phases are not perfectly matched. Some are tested on a day of peak estradiol or progesterone, others 

days before or after it. Analyses using hormone levels are sensitive to these variations; analyses that 

categorize sessions as conceptive or non-conceptive are not. In our preregistration, analyses using LH-

confirmed conception status as a predictor are secondary, not primary, analyses.6

In multilevel analyses, one can enter two orthogonal measures of variation for each hormone: 

within-woman (levels mean-centered within-woman); and between-woman (variation across woman-

specific means; see West et al., 2011). One might think that between-woman variation reflects individual 

differences or variation across cycles. While true if hormone levels are assayed daily (e.g., Roney & 

Simmons, 2013), when hormone levels are assayed sparingly across a cycle, much “mean” variation 

simply reflects when levels were assayed and not true differences across women or cycles. (I.e., even if 

every woman’s cycle had identical hormone profiles, some “between-woman” variation would emerge, 

simply due to sampling at different points within the cycle.) Indeed, Cronbach’s α of mean ln(E/P) in 

Jünger et al.’s data is just .22 (mean r across 4 measurements = .09), consistent with most variation in 

6 In fact, in 5% of the instances in which Jünger et al. could confirm an LH surge, women’s “high fertility” session was 
conducted 3+ days after the surge. In another 9%, it was conducted 2 days after the surge, and in 12% it was conducted a day 
after the surge. Yet ovulation typically occurs less than a day following the LH peak (e.g., Wetzels & Hoogland, 1982); 
fertility has fallen dramatically (by 50-80%) even by the day of the LH peak (e.g., Dunson et al., 1999, 2001). By day of 
ovulation, estradiol levels have dropped substantially (see Roney & Simmons, 2013, and references cited) and progesterone 
levels have begun to rise (e.g., Wetzels & Hoogland, 1982). In all likelihood, 10-20% of high fertility sessions in Jünger et al.’s 
sample (even among those with confirmed LH surges) were not conducted during a truly “high” fertility period, for timing 
reasons alone. (Additional ones could have been anovulatory. See section 4.11.)
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means reflecting within-woman, not between-woman, variation. Moreover, a reasonable assumption is 

that hormones have similar effects on outcomes, whether within-woman or between different women. 

Grand-mean centering hormone levels (as opposed to within-woman mean centering) allows for 

analysis of the total association of a hormonal measure with an outcome (e.g., Kreft et al., 1995). We 

proposed to run both sets of analyses.

Log-transforming hormone levels and using the estradiol:progesterone ratio. In analyses 

examining outcome features in relation to hormonal predictors, log-transformation of hormone values 

is a common practice (Jones, 1996). Though transformation typically creates a distribution closer to 

normal, this is not the primary reason for transformation. Log-transformation changes the linearity of 

associations with other variables. Given how hormones affect outcomes—by binding to available 

receptors that diminish in availability as hormone levels rise—hormonal effects often increase linearly 

with proportionate (i.e., log-transformed), not absolute, changes (Jones, 1996). 

We specifically preregistered analyses examining outcomes (e.g., preference shifts) as a function 

of the log of the estradiol to progesterone ratio [ln(E/P)]. While E increases both prior to and after 

predicted ovulation, P is only produced in appreciable levels after ovulation. Furthermore, the two 

hormones have known antagonistic effects on sexual behavior (Dixson, 2013; Roney & Simmons, 2013). 

Thus, E/P is a biomarker of conceptive status (Baird et al., 1991), which, log-transformed, is ln(E/P). 

Ln(E/P) reflects simple additive effects of ln(E) and ln(P), as ln(E/P) = ln(E) – ln(P). Hence, in 

regression analyses, ln(E/P) captures equal but opposite joint additive contributions of ln(E) and ln(P). 

(It constrains the regression weights of ln(E) and ln(P) to be identical in magnitude but opposite in 
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sign. E/P does not have a similar interpretation; see Sollberger & Ehlert, 2016.7) Joint but opposite 

effects can be detected with greater power using ln(E/P) than two separate predictors. Follow-up 

analyses entering ln(E) and ln(P) separately are necessary to evaluate unique contributions.8

At the same time, testosterone (T) levels may also affect outcomes (e.g., Welling et al., 2007) 

and covary with E and/or P. We control for these effects by also entering ln(T) and interactions 

paralleling ln(E/P) interactions. While female sexual behavior has also been attributed to T, its 

independent effects have been questioned (Wallen, 2013). Robustness analyses can assess the impact of 

removing ln(T) from the model. Grebe et al. (2016) applied analyses very similar to these to examine 

hormonal associations with in-pair and extra-pair sexual interests.

Muscular variation captured with a single measure. In our preregistered replication study, we 

use images of bodies that, as confirmed by pretesting, differ in musculature. A measure of third-party 

rated muscularity will be used as a predictor in analyses. By contrast, Jünger et al. presented an array of 

bodies exhibiting natural variation in muscularity; they used multiple bodily measurements, 

purportedly representing “upper body strength,” as predictors in analyses. In their main analysis, 

Jünger et al. simultaneously entered the multiple putative indicators of upper body strength, 

7 Some researchers enter the untransformed E/P ratio into analyses, but interpretation is not straightforward. All variance 
in ln(E/P) is explained by simple additive effects of ln(E) and ln(P). By contrast, in Jünger et al.’s data, 20% of the variance 
in E/P is explained by additive effects of E and P, 4% by the linear E × P interaction, and 6% by E2 and P2. Over 70%, then, 
reflects complex non-linear main effects and interactions. In contrast to ln(E/P), E/P’s meaning is unclear (see Sollberger & 
Ehlert, 2016, who broadly discourage use of raw hormone ratios; see also SOM, section 27).
8 A reviewer wondered whether raw or logged hormone levels relate more strongly to conceptive status. In Jünger et al.’s 
sample with confirmed LH surges, both logged progesterone and the log of the E/P ratio predict “phase” (fertile vs. non-
fertile) better than raw progesterone or the raw E/P ratio; r = -.60, -.73 for raw and logged progesterone values, respectively, 
and .38, .70 for raw and logged E/P ratios. The reviewer responded that this association may not generalize to other samples. 
See SOM, section 26, for further discussion of raw vs. log-transformed hormone measures and ratios.
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compromising power to detect any one effect (though, as noted, they also included analyses entering 

individual features in their supplementary materials). Entering a single variable reflecting upper body 

strength, as reflected by multiple features aggregated into one measure, increases statistical power 

relative to entering multiple variables reflecting individual features (or single features one at a time). In 

our preregistration concerning preference shifts for behavioral displays, we capture behavioral variation 

with a single composite measure, an approach we recommend for analyzing Jünger et al.’s data.

Naturally, the indicator variable should validly reflect perceived upper body strength. Of the 6 

male features potentially tapping upper body strength examined by Jünger et al., just one—strength—

had a main effect on sexual attractiveness (see their Table 2). Yet prior research shows that women tend 

to find muscular bodies sexy, especially when unconfounded with fat (Frederick & Haselton, 2007; 

Millar, 2013). An obvious question arises: Do these features truly reflect muscularity or upper body 

strength? 

We addressed this question in Jünger et al.’s dataset through a series of steps. First, we 

separately entered each male feature into a multilevel regression model predicting sexual attractiveness, 

controlling for BMI. Ratings were cross-classified by female participants, male targets, and their 

interaction, all for which we estimated random intercept variation. We also included random slopes for 

BMI and each male body feature to account for variation across women in impact of these features on 

ratings. Only Strength and Upper Arm Circumference significantly predict sexual attractiveness (all 

other p’s > .4). See Table 1.

Second, Kordsmeyer et al. (2018) asked men and women to rate these same 3-D scanned bodies 

on “Bodily Dominance”—how likely they were to win a physical fight. (Kordsmeyer et al.  and Jünger 
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et al. have overlapping authorship.) One can reasonably expect these ratings to reflect upper body 

strength, as well as overall size. With BMI controlled, Bodily Dominance was significantly and solely 

predicted by Strength and Upper Arm Circumference—the same features that predict sexual 

attractiveness; see Table 1. Consistent with muscularity being sexy, men’s Bodily Dominance strongly 

predicts their mean sexual attractiveness to Jünger et al.’s women (BMI controlled), r = .73. The extent 

to which the 6 features correlate with Bodily Dominance strongly covaries with the extent to which 

they predict sexual attractiveness (BMI controlled), r = .87. See Table 1.

Third, we factor analyzed the 6 male features (principal axis extraction, direct oblimin 

rotation). A scree slope suggested 3 factors (eigenvalues = 2.23, 1.47, 1.01, .59, .43, .27). Strength and 

Upper Arm Circumference primarily define one factor (pattern matrix loadings of .71 and .73). 

Shoulder-to-Chest Ratio (-.38) and testosterone level (.34) have secondary loadings on this factor. 

Shoulder-to-Hip Ratio and Shoulder-to-Chest Ratio define a second factor (loadings of .84 and .67), 

and Torso Ratio (.80) a third. (See Table S1 in SOM for full loadings matrix.) Only the first factor 

relates to attractiveness or Bodily Dominance. See Table 1.

In sum, the empirical evidence converges on a clear conclusion: Two of the 6 features reflect 

muscularity; the others do not (at least not substantially).9 Accordingly, we used a simple unit-

weighted composite of Strength and Arm Circumference in our analyses. We refer to this composite 

score as Strength/Muscularity, though recognizing that this composite does not fully capture 

9 One can ask why the other 4 features don’t reflect muscularity. Muscular men may have broad shoulders and chests, such 
that the ratio minimally covaries with muscularity. Shoulder-to-Hip and Torso Ratio might reflect small hips as much as 
than large upper bodies. Men’s testosterone levels don’t strongly predict muscular development (e.g., Alvarado et al., 2016). 
In any event, the evidence is clear: These features don’t strongly reflect muscularity in Jünger et al.’s bodies.
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muscularity and is conflated with fat mass (such that BMI must be controlled in statistical analyses, as 

we detail below). In our analyses, effects of primary interest contain a ln(E/P) × Strength/Muscularity 

component.10 

Male height. Pawlowski and Jasienska (2005) found that, during the follicular phase compared 

to the luteal phase, women particularly preferred taller men. (A weakness of this study is that it did not 

examine the impact of fertility status per se.) Some scholars have argued that male height is associated 

with formidability (e.g., Fessler, Holbrook, & Snyder, 2012; Lukaszewski et al., 2016), though evidence 

is mixed (see Sell et al., 2009). We subjected height to the same tests we submitted putative indicators 

of upper body strength. Independent of BMI, height did not predict attractiveness or Body 

Dominance (see Table 1). (The latter correlation was actually negative, though not significant, r = -.20, 

p = .073. The correlation without BMI controlled was near-zero, r = -.08.) In Jünger et al.’s sample, 

then, taller men were neither more attractive nor perceived to be more formidable. Male bodies shown 

to raters were headless, such that women could not perceive full height. Head size does not scale 1:1 

with body size and, hence, smaller relative head size is a cue to height; raters lacked that cue of height as 

well. In any event, because height was not perceived as attractive or indicative of strength, we did not 

include it in analyses (except, as we note immediately below, as a component of BMI, which we 

controlled for).11

10 This composite correlates .97 with corresponding factor scores. In robustness analyses, we used factor scores, which 
yielded near-identical results. See Table S8.
11 We factor analyzed height along with the 6 male features putatively indicative of upper body strength. Once again, one 
factor was defined most strongly by strength and upper arm circumference. Two other features had loadings that exceeded 
.5: height and shoulder-to-chest ratio (negatively, such that men with large chests relative to shoulder breadth had high 
factor scores). The factor, then, reflected size and strength, though, because height was not a cue of formidability in this 
sample of headless bodies, the correlation of factor scores for this factor with Bodily Dominance, independent of BMI, was 
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Control for preference shifts for confounding features. Men’s BMI is highly confounded with 

their Strength/Muscularity (r = .69), meaning shifts in aversion to certain components of high BMI—

e.g., “flabbiness”—are confounded with shifts in preference for Strength/Muscularity. To fully control 

for confounds with preferences, one must include a set of terms with BMI paralleling terms with 

Strength/Muscularity (e.g., ln(E/P) × BMI). Alternatively, one can regress Strength/Muscularity on 

BMI and compute residual scores, unconfounded with BMI, and use those in analyses. We analyzed 

results using both methods as a robustness check.12

Moderation by relationship status. To test moderation by relationship status, we include the 

ln(E/P) × Strength/Muscularity × Relationship Status interaction. This hypothesis had been specified 

in Jünger et al.’s pre-registration but was not tested in their analysis. 

Summary. Our analyses contrast with Jünger et al.’s in a number of ways. We summarize major 

differences in Table 2. 

4. Results 

Below, we present our analyses and results of Jünger et al.’s data, downloaded from the Open 

Science Framework. We begin by presenting a model that fully reflects the analytic strategy we outline 

above and in our preregistration (section 4.1). Next, we perform a series of robustness analyses based on 

this full model that examine how the exclusion of certain variables (section 4.2), differing 

relatively weak, r = .20, p = .073. As part of our robustness analyses, we substituted these factor scores 
(Strength/Muscularity/Height) for Strength/Muscularity. Analyses produced very similar findings and do not alter 
conclusions.  Results are provided in Table S9; see also Figure S1, section 21.
12 Including BMI effects in the analysis removes not only confounds but also nuisance variance in attraction associated with 
confounds. As well, it permits examination of BMI effects. For these reasons, we prefer it, though analysis using residual 
scores simplifies the model. Once again, Jünger et al.’s preregistration stated that upper arm circumference would control 
for BMI.
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transformations of variables (sections 4.3-4.4), and alternative operationalizations of predictor variables 

(sections 4.8-4.10) affect results. In addition, we perform analyses that separately examine effects of 

estradiol and progesterone (section 4.5), as well as estimate effects within partnered and single women 

separately (sections 4.6-4.7). Table 3 describes the flow of these analyses. Both Jünger et al.’s and our 

preregistration emphasized moderation of impacts of bodily features on sexual attraction (vs. attraction 

to long-term mates). Hence, we focus on sexual attractiveness as a criterion. For completeness, we 

report analyses on attraction to men as long-term mates in Table S20.

4.1 Initial analysis

In our multilevel regression model, women’s ratings of sexual attractiveness were cross-

classified by female participants, male targets, and their interaction; random intercept variation was 

estimated for all. Predictors were within-woman ln(E/P), within-woman ln(T), woman-mean ln(E/P), 

woman-mean ln(T), Strength/Muscularity, BMI, and relationship status. Within-woman hormonal 

measures were zero-centered within-woman. Relationship status was effect-coded (single = -.5, paired = 

.5). All other measures were grand-mean zero-centered. Interactions involving a hormone level × male 

feature × relationship status (and all embedded 2-way interactions) were entered. Random slope 

variation across women was estimated for within-woman hormone levels, Strength/Muscularity, and 

BMI.13 See our supplemental R markdown file (end of SOM) for R code used to run this and all other 

models.

13 Estimates may be sensitive to model selection: random intercept and slope terms. We used model fit statistics to select 
models. See S2 in SOM. Seven outlying hormone values, identified by visual inspection (2 progesterone, 5 testosterone; all 
values 2+ s from nearest retained value), were excluded. Their exclusion did not affect results. See Table S3 for analyses 
including these values.
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Table 4 (full model) presents results. Most terms are control variables. Two are of primary 

interest: within-woman ln(E/P) × Strength/Muscularity and within-woman ln(E/P) × 

Strength/Muscularity × Relationship Status. The former did not emerge; the latter did (p = .014); 

hence, the two-way interaction was found to vary as a function of relationship status. As ln(E/P) 

increased, so too did partnered women’s preference for Strength/Muscularity (see below), supporting 

Jünger et al.’s preregistered Hypothesis 4a.

A significant negative mean ln(E/P) × BMI × Relationship Status interaction also emerged. As 

partnered women’s mean ln(E/P) increased, so too did their preference for lower BMI, independent of 

Strength/Muscularity. BMI independent of Strength/Muscularity likely reflects adiposity, in part, 

which might explain BMI’s very robust negative main effect on attractiveness.14

For our own study, we will examine effects controlling for session number. Jünger et al. 

controlled for male age too, which may be confounded with muscularity. In Tables S4 and S7, we 

present analyses controlling for these features. Test-statistics for the within-woman ln(E/P) × 

Strength/Muscularity × Relationship Status effect are nearly identical (slightly stronger in each 

analysis).

4.2 Excluding ln(T) and between-woman terms

14 Reviewers questioned this interpretation, as relatively few bodies in Jünger et al.’s sample qualified as “overweight,” let 
alone obese. (10% of BMIs were > 26.) The variation in BMI in this sample, then, may not be meaningful. Extremes leverage 
correlations, however; 10% overweight individuals may well be enough to generate meaningful variation. And, indeed, 
BMI’s very robust negative main effects (net of Strength/Muscularity) on attraction—effects as large of those of 
Strength/Muscularity—demand explanation; they betray the view that variation in BMI in this sample is not meaningful. 
In part, independent of muscularity, BMI must reflect adiposity.
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With ln(T) and its interactions (largely non-significant) excluded, the ln(E/P) × 

Strength/Muscularity × Relationship Status effect remains significant (p = .019). See Table 4. Within-

woman and between-woman (woman-mean) hormonal terms are orthogonal and, hence, inclusion of 

the latter should not substantially affect estimation of the former. We did run analyses that excluded 

between-woman terms, both with and without ln(T) and its interactions included. As expected, the 

ln(E/P) × Strength/Muscularity × Relationship Status effects were nearly identical. See Table S5, 

SOM.

4.3 Estimating overall effects of ln(E/P)

Much “between-woman” variation in sampled E and P levels is, in fact, within-woman 

variation, arising from variable timing of sampling across women’s cycles. But even if mean levels truly 

reflect between-woman variation (e.g., some women experience repeated anovulatory cycles), a 

parsimonious prediction is that equivalent concentrations of hormones produce similar responses, 

whether occurring in the same woman or different women. In such circumstances, entry of a grand-

mean centered predictor (here, ln(E/P)) is the most powerful approach (e.g., Kreft et al., 1995). In this 

analysis, a positive ln(E/P) × Strength/Muscularity × Relationship Status interaction (p = .005) is 

significant. Among partnered women, high levels of ln(E/P) associate with increased preference for 

Strength/Muscularity. See Table 4.15

4.4 Using residual Strength/Masculinity scores

15 For these analyses, 76% of total variation in ln(E/P) is explicitly within-woman. Again, a portion of between-woman 
variation is actually within-woman and arises as between-woman due to variable timing of sessions. All in all, the vast 
majority of total variance is within-woman.
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As expected, Strength/Muscularity residual scores (with BMI partialled out) yield very similar 

results. Table 4 presents a model (ln(T) terms excluded) retaining three predictors—ln(E/P), residual 

Strength/Masculinity, Relationship Status—and their interactions (hence, a fairly simple model with 

just 7 terms); 3-way interaction p = .008. 

4.5. Estimating independent effects of ln(E) and ln(P)

The regression analyses above constrain ln(E) and ln(P) to have weights equal in magnitude 

but opposite in sign. In follow-up analyses we examined their independent effects. The effects of ln(P) 

are robust: ln(P) interacts (negatively) with Strength/Muscularity and Relationship Status to predict 

attraction; ln(E) does not. See Tables 5 and S6.

4.6. Estimation of effects within partnered and single women

Assigning a value of zero to single or partnered women in relationship status coding, 

respectively, yields model-based estimates of all lower-order main effects and interactions for each 

group. The grand-mean centered ln(E/P) × Strength/Muscularity interaction is positive for partnered 

women, though it falls just short of statistical significance, p = .061. For single women, it significantly 

runs in a negative direction. See Table 6. See Table S17 for estimates separately examining within-

woman and woman-mean hormone levels.

4.7. Estimation of preferences for high vs. low Strength/Muscularity men

With partnered women assigned a value of zero in relationship status coding and 

Strength/Muscularity zero-centered at the 5th and 95th percentiles (z = -1.60, 1.91, respectively), one 

derives model-based estimates of the effect of ln(E/P) on partnered women’s attraction to highly 

unmuscular and very muscular men, respectively. See Table 6. As can be seen, partnered women’s 
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ln(E/P) positively predicts attraction to muscular men (though the effect falls just short of statistical 

significance, p = .07. It does not predict their attraction to non-muscular men, with effect size near-

zero. Though no firm conclusions can be drawn, these results lead one to question Jünger et al.’s claim 

that, when conceptive (or, here, when experiencing hormonal patterns reflective of fecundability), 

partnered women rate bodies in general as more sexually attractive, independent of men’s bodily 

features. Effects for ln(P) are similar to those for ln(E/P) (but reversed in sign and, in the case of men at 

the 95th percentile, statistically significant, p = .033). These contrasting patterns are illustrated in Figure 

1.

4.8. Moderation of the association between Bodily Dominance and sexual attractiveness ratings

We used Kordsmeyer et al.’s (2018) ratings of Bodily Dominance to vet male features. 

Substituting Bodily Dominance for Strength/Muscularity is expected to produce similar results, as it 

likely reflects overall perceived muscularity, plus body size. And it does: a significant 3-way ln(E/P) × 

Bodily Dominance × Relationship Status interaction emerged (p = .001). See Tables 7 and S14 and 

Figure S2 (section 21). This 3-way interaction involving a separate (and raw, unprocessed) measure of 

male muscularity should bolster confidence in these effects’ robustness. Bodily dominance ratings are 

completely distinct from any of the 7 male features and, hence, these effects do not depend on any 

particular composite of those features.

4.9. Moderation of Strength/Formidability and sexual attractiveness ratings

Strength, upper arm circumference, and Bodily Dominance covary considerably, r = .38-.51, all 

p < .001. A first principal component of all 3 (loadings of .78, .85, and .78, respectively) could be an 

even better measure of perceived muscularity. Component scores, which we call 
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Strength/Formidability, covary almost perfectly with a unit-weighted sum (α = .72; r > .999). Not 

surprisingly, in multilevel analyses, ln(E/P) interacts with Relationship Status and 

Strength/Formidability to predict sexual attraction, p < .001. See Tables 7 and S15 and Figure S3 

(section 21).

4.10. Estimation of effects within partnered and single women: Bodily Dominance and 

Strength/Formidability

We also estimated lower-order interactions and main effects for partnered and single women 

separately, when Bodily Dominance and Strength/Formidability were entered as male features. The 

ln(E/P) × Bodily Dominance and ln(E/P) × Strength/Formidability interactions ran strongly in a 

negative direction for single women. They ran in positive directions for partnered women, though they 

fell short of significant (The ln(P) × Strength/Formidability was significant for partnered women.) See 

Tables S16 and S17.

4.11. Summary of hormone × male feature × Relationship Status effects

In total, we conducted many analyses examining hormone × male feature × Relationship 

Status effects: ones based on our full model; models removing terms with T; models with grand-mean 

centered hormone levels; models using residuals on male feature after BMI had been partialled out; 

models with male age included; models without between-woman hormone terms; models substituting 

an alternative measure of male feature (Strength/Muscularity/Height, Bodily Dominance, 

Strength/Formidability) for our Strength/Muscularity composite); models in which ln(E) and ln(P) 

were substituted for ln(E/P); and so on. We present a summary of the hormone × male feature × 
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Relationship Status effects emerging from these analyses in Table 8. As can be seen, the effect robustly 

emerges across analyses.  

4.12. Using cycle phase as a predictor

In secondary analyses (Gangestad et al., 2018b), we substituted cycle phase for ln(E/P). The 

Cycle Phase × Strength/Muscularity × Relationship Status interaction falls short of statistical 

significance, t = 1.59, p = .111. See Table 9. The contrast between this result and the comparable ln(E/P) 

3-way interaction requires an explanation. If hormones drive cycle shifts, hormonal associations should 

exceed cycle phase associations. Some phases may be mischaracterized, and some cycles anovulatory. In 

Roney and Simmons’ (2013) sample, 33% of all cycles were anovulatory or evidenced luteal 

insufficiency, judged by small progesterone rises. Some of these cases surely exist in Jünger et al.’s 

sample. An LH surge (especially one detectable with the very high sensitivity strips Jünger et al. used) is 

not necessarily indicative of ovulation; in anovulatory cycles, LH may rise, though surges may be 

blunted (e.g., Wu & Cowchock, 1983). Lynch et al. (2014) found that, among cycles classified as 

anovulatory based on failure to cross a threshold of luteal progesterone level (akin to that used by 

Roney & Simmons, 2013), the LH increase from baseline still achieved 70% of the increase in cycles 

classified as ovulatory—levels very likely detectable with Jünger et al.’s high sensitivity method. Perhaps 

even more importantly, and as already noted (see fn 7), Jünger et al. conducted 14% of fertile phase 

sessions 2+ days after an LH surge; the majority of these sessions would be during the luteal phase and 

non-conceptive. (Wetzels and Hoogland [1982] found that the initial LH surge, measured in serum, 

occurred 11-24 hours prior to ovulation, as detected by ultrasonography. Conception risk drops steeply 

after ovulation.) Another 12% were conducted one day after the LH surge; a portion of these would 
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likely also have been during non-conceptive occasions (e.g., Dunson et al., 2001) (see fn 7). The timing 

of high fertility sessions, relative to the LH peak, varied by up to 8 days (3 days prior to a surge to 4 days 

after). Hence, Jünger et al.’s measure of “phase”, even among cycles with positive LH surges, possesses a 

considerable degree of noise. Estradiol and progesterone levels, by contrast, were time-locked with 

session and, hence, concurrent with assessments of preferences. 

Progesterone levels during truly conceptive peri-ovulatory and mid-luteal phases should 

overlap little (Ellison, 1993). Thus, in exploratory analyses, we restricted cases to those exhibiting no or 

limited overlap through a range of procedures. The Cycle Phase × Strength/Muscularity × 

Relationship Status interactions were significant in these subsets. Analyses are reported in Table S23. 

We fully acknowledge and emphasize that these analyses add very little, if any, independent evidence 

for cycle effects beyond what hormonal associations offer. If ln(E/P) and progesterone levels interact 

with relationship status to affect preferences, the interaction effect of phase and relationship status on 

preferences will increase when cases are selected to accentuate progesterone levels between fertile and 

non-fertile sessions—in effect, potentially removing luteal-phase cases misclassified as being within the 

fertile-phase, as well as luteal-phase cases with progesterone levels reflective of non-conceptive cycles. 

These findings, then, merely illustrate implications of analyses already presented; in no way do they 

constitute a novel empirical test. That said, these implications are not trivial. If steroid hormones 

regulate cycle shifts, then hormonal measures should produce larger effects than cycle phase, especially 

when cycle phase is a noisy measure. Null findings with respect to phase should not be used to infer the 

null hypothesis. The hormonal associations we find invite an alternative explanation for weaker 
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findings for phase: Jünger et al.’s measure of phase does not tap the drivers of cycle shifts as well as 

direct hormonal measures do.  

5. Contrasting Results

5.1. Null conclusions and main effects of hormones on general attraction?

Jünger et al. presented preregistered analyses examining whether women’s cycle phase and 

ovarian hormones moderate women’s sexual attraction to men’s muscular features. They found no 

evidence for such effects, “indicating no shifts in preferences for specific traits” (p. XXX); cycle shifts 

“do not seem to alter preferences for body characteristics at all, leaving no room for cycle shifts in mate 

preferences for masculine characteristics or any other assumed indicators of good genes” (p. XXX; 

emphasis added). 

By contrast, our analyses on Jünger et al.’s data yields suggestive evidence that a measure of 

men’s Strength/Muscularity (controlling for BMI) more strongly predicts partnered women’s sexual 

attraction when estradiol levels are high relative to their progesterone levels. Single women exhibit an 

opposite pattern. Analyses using a measure of male bodies’ formidability or a global rating of bodily 

dominance yield similar hormonal moderation effects. These key results are robust to 

inclusion/exclusion of control variables (age, women’s testosterone) and exclusion/inclusion of 

outliers. The patterns suggested by these analyses contrast with Jünger et al.’s conclusions: Women’s 

hormone levels, in concert with their relationship status, moderate associations of men’s muscular 

features with women’s sexual attraction. When women in relationships produce concentrations of 

ovarian hormones characteristic of high conception risk, they may be especially sexually attracted to 

strong, muscular men (independent of BMI); single women may show opposite associations. These 

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624



                                                                                                          Hormone-associated shifts redux  30

patterns are driven by women’s progesterone levels. As well, these analyses provide evidence that 

romantically involved women with a hormonal profile of high conception risk may be especially 

attracted to bodies that are relatively lean—bodies of low BMI, with measures of muscularity 

controlled. 

 Jünger et al. claim that, when conceptive, partnered women rate men’s bodies in general as 

more attractive. We find more mixed effects using hormonal predictors (with p > .05 in most analyses). 

These effects may be real, but they may also be qualified by relationship status and male features. 

Among partnered women, ln(E/P) may be associated with sexual attraction to men scoring high on 

Strength/Muscularity but not (or minimally) with sexual attraction to men scoring low on 

Strength/Muscularity.

We fully acknowledge that, though relationship status-hormone interaction effects appear to 

be robust across analyses, simple effects for partnered and single women separately do not consistently 

yield significant effects. Across 4 measures—Strength/Muscularity, Strength/Muscularity/Height, 

Bodily Dominance, and Strength/Formidability—and 2 hormonal measures—ln(E/P) and ln(P)—

50% (4/8) of analyses yielded p < .05 for hormonal effects on partnered women’s preferences; 62% 

(5/8) yielded p < .05 for hormonal effects on single women’s preferences. No definitive conclusions in 

this regard can hence be reached. But just as results do not yield definitive evidence for significant 

hormonal moderation for partnered or single women, they surely too do not yield evidence of no 

effects, contrary to Jünger et al.’s conclusions (e.g., Amrhein et al., 2019).

5.2. What explains the differences?
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Our analyses find support for hormonal effects on preferences. Jünger et al.’s did not. What 

factors made the difference? We focus on three mentioned previously, along with one other.

5.2.1 Examining the moderating role of relationship status

We start with the obvious: We examined effects—hormone × male feature × relationship 

status interactions—that Jünger et al. did not, despite preregistering a hypothesis directly pertaining to 

these effects.

5.2.2. Controlling for preference for BMI

Jünger et al. only controlled for the main effect of BMI. Failing to control for BMI interactions 

as well leaves confounds in preference shifts. When we too entered only BMI’s main effect, the critical 

ln(E/P) × Strength/Muscularity × Relationship Status effect (initial analysis, Table 4) weakened, t = 

2.25, p = .025.

5.2.3. Compositing features vs. pitting them against one another

In primary analyses, Jünger et al. entered male features simultaneously. Tests on each can detect 

unique effects only, weakening power to detect shared effects. When we similarly entered Strength and 

Upper Arm Circumference simultaneously, neither ln(E/P) × male feature × Relationship Status 

interaction effect was significant: t = 1.50, p = .133; t = 1.48, p = .138, respectively. With BMI interactions 

also uncontrolled—as in Jünger et al.’s analyses—effects were weaker yet: t = 1.42, p = .156; t = .86, p = 

.67.  Jünger et al.’s primary analytic approach was not especially sensitive to detecting hypothesized 

effects.

5.2.4. Random slope effects
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We add one feature. We modeled random slope effects for BMI, male features, hormones, and 

phase across women. That is, our models estimated variation across women in sensitivity of ratings to 

male features and hormones. Random slope effects were generally very large, estimates often 5+ times 

their standard errors; their inclusion greatly increased model fit (see S24). That may well be because the 

standard deviation of individual women’s ratings differed substantially: from <1 to >4 (i.e., women 

used different ranges of the scale). Jünger et al. did not model these random slopes. Yet exclusion of 

meaningful random slope terms can greatly overestimate the robustness of some fixed effects, largely 

because error terms are underestimated (e.g., Judd et al., 2012; Barr et al., 2013). 

Jünger et al.’s results most affected by inclusion of random slopes pertain to their primary 

positive take-homes. They report robust Cycle Phase and Cycle Phase × Relationship Status effects on 

sexual attraction. , .” When we repeated Jünger et al.’s analysis including a random slope component, 

fit improved substantially: BIC change = -306.1. (See S24. BIC difference > 10 is typically considered 

large; e.g., Vrieze, 2012.). While the Cycle Phase main effect remained significant, it was less impressive: 

t = 2.09, p = .037. The relationship status interaction fell short of being significant, p = .051. See Table 

9. In our analyses that used within-woman or grand-mean centered ln(E/P) rather than cycle phase, 

ln(E/P) never interacted with relationship status to predict sexual attraction. See Table 4. 

5.2.5. Log-transformation

In our planned analyses, we entered log-transformed hormone levels, following common 

practice within endocrinological research. In Table S10, we present analyses that examined preferences 

using untransformed estradiol and progesterone levels. As we would anticipate (see Footnote 7; see also 

Footnote 8), the untransformed progesterone × Strength/Muscularity × Relationship Status 
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interaction was slightly weaker than the ln(P) × Strength/Muscularity × Relationship Status 

interaction, though not markedly so. 

5.3. Correlation between mean ratings across sessions

We address one additional argument Jünger et al. made. They emphasized that there is “no 

room for differential effects of masculinity cues” (p. XXX; emphasis added) because the rank order 

correlation of sexual attractiveness ratings across men for high and low conception risk women is nearly 

perfect (Spearman rank ρ = .998). This argument misconstrues the impacts of differential effects. 

When some women weight an influential feature more than others do, rank ordering across women 

need not be greatly affected. On that particular feature, men have a fixed rank-ordering. Weighting the 

feature more, all else equal, will increase the dispersion of ratings as a function of the feature (i.e., 

increase the regression slope), but the ordering of how ratings of men are affected by the feature 

remains unchanged.16 Ordering of men on that feature may differ from ordering on other features, 

such that differential weighting will shift overall, weighted ordering somewhat. But changes may be 

minimal. To demonstrate this, we analyzed mean ratings given to men by women at high and low 

ln(E/P). The regression weights of Strength/Muscularity and BMI were greater for mean ratings at 

high ln(E/P), yet the two sets of ratings correlated .993; see S25 in SOM for details. Contrary to Jünger 

et al.’s claims, a near-perfect correlation does not entail that there is “no room” for differential effects. 

5.4. Effect size estimation

16 Imagine, for instance, that ratings were a function of a single cue, but some women made greater discriminations based 
on the cue than others. (E.g., some women prefer the cue by a lot, others prefer it by a little.) The correlation between each 
woman’s ratings and the cue would be 1.00, and women’s ratings would correlate with each other 1.00. Differential use of 
the cue across women would be reflected in variances, with women making stronger discriminations based on the cue giving 
more variable ratings.
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Statistically significant effects may be inconsistent with the null hypotheses, while nevertheless 

reflecting effect sizes that are inconsequential. Are the effects we report theoretically meaningful? 

Within partnered women, the per unit impact of Strength/Muscularity on attractiveness ratings is 

estimated to be 8% greater when ln(P) is 1s below the mean (21st percentile) compared to when ln(P) is 

1s above the mean (75th percentile; (.879+.0326)/(.879-.0326); Table 5). This difference in impact 

produces a 16% boost in variance in attractiveness ratings of women 1s below mean ln(P) associated 

with Strength/Muscularity relative to ratings of women +1s above mean ln(P) (1.082 = 1.16). For 

women at extremes on ln(P), the 5th and 95th percentiles (-1.32s and 1.55s from the mean, respectively), 

this difference in variance is naturally larger, 24%. Differences are of similar size for single women, but 

in the opposite direction.  Differences in impact strike us as potentially meaningful. At the same time, a 

95% confidence interval around effect sizes includes ones both near-zero and very substantial – double 

the point estimate (variance differences of 33% and 51% for the two comparisons above). The current 

data do not allow one to pinpoint effect sizes with sufficient precision to judge their theoretical 

meaningfulness or practical impact.

Jünger et al. repeatedly presented women with headless digital figures lacking some human-

typical features, such as realistic skin tone. In so doing, they enhanced experimental control by 

stripping out individuating features aside from bodily shape, but likely at a cost of ecological validity 

and psychological realism. Women do not encounter, evaluate, or respond to such male figures in 

everyday life. Of course, they may evaluate their attractiveness, in certain regards, using processes 

designed to evaluate “real” male bodies. But one cannot assume that effect sizes revealed in Jünger et 

al.’s study directly generalize to effect sizes in women’s evaluations of real bodies. This point is not a 
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criticism of Jünger et al.’s study; the trade-off between control and realism entailed by their study 

design is very reasonable. At the same time, this trade-off implies that an estimated effect size need not 

match effect sizes in women’s everyday life. We stress that additional work is needed to fully assess the 

meaningfulness of effects in ecological conditions. 

5.5. Interpretation

What evolutionary account explains hormonal moderation of preferences for muscularity? Do 

these data yield evidence for the good genes interpretation of hormonal effects? Though the evidence 

we present could potentially be consistent with a good genes framework, more work is needed to 

clarify appropriate interpretation. Several key aspects of the findings must be addressed.

First, no preference shift independent of relationship status emerged; only romantically 

involved women displayed the preference shifts predicted by the good genes account. As Jünger et al. 

note, particular forms of the good genes hypothesis (such as the dual mating hypothesis; Pillsworth & 

Haselton, 2006) expect moderation by relationship status. But other possible explanations for this 

moderation should also be considered, including Type I error, conjectures that non-conceptive sex 

plays special roles in partnered women (Grebe et al., 2013), and other perspectives on human mating 

(Emery Thompson & Muller, 2016). 

Second, the 3-way interaction is not a simple attenuated 2-way interaction. Based on good 

genes thinking, one might expect a large positive ln(E/P) × muscularity interaction for women in 

relationships and a small or zero interaction for single women. Yet the 3-way interaction is driven by 

two 2-way interactions in opposite directions: positive for partnered women and negative for single 

women. For analyses examining preferences for Bodily Dominance, 2-way interactions were robust for 
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single women but not for partnered women. Sampling variability could of course play a role (perhaps 

the true interaction is an attenuated one), but that possibility begs for additional studies.17

Third, changes in romantically involved women’s progesterone are associated with changes in 

mate preferences in this sample. Estradiol-linked changes were generally not suggested. Yet other 

studies link variation in estradiol to levels of sexual interest (e.g., Roney & Simmons, 2013; Grebe et al., 

2016). 

5.7. An independent demonstration

Since we conducted these analyses, we learned of another, recently published study that found 

a similar interaction. Marcinkowska et al. (2018) examined preferences for male bodily masculinity in a 

sample of 102 women. Their preference measure consisted of just 3 items and possessed low internal 

consistency. Furthermore, sample size was smaller than Jünger et al.’s; in light of reduced power, results 

must be interpreted cautiously. Marcinkowska et al. reported, however, a significant within-woman 

Progesterone × Relationship Status effect on preferences, running in the same direction as we report 

here. We note that, unlike in our analyses, the simple effect of progesterone for partnered women was 

not significant (and, indeed, was near-zero). The simple effect for single women ran in a positive 

direction. Though these results give additional reason to think that the interaction effect we report is 

robust, better estimation of simple effects for partnered and single women requires more research.18

17 One reason to be cautious about drawing conclusions concerning the relative 2-way hormone × male feature interactions 
for single and partnered women is that they vary across measures of male feature. Hence, though the 2-way interaction is 
stronger for single women using Bodily Dominance as a measure, it is stronger for partnered women when 
Strength/Muscularity/Height is used. Again, more data are needed.
18 Both Marcinkowska et al. (2018) and DeBruine, Hahn, and Jones (2019) also report robust between-woman (i.e., woman-
mean) Progesterone × Relationship Status interactions predicting women’s preferences for facial masculinity. These 
interactions run in the same direction as we and Marcinkowska et al. find for within-woman Progesterone × Relationship 
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6. Reflections on Preregistration and Related Issues

 Preregistration of analyses is a valued methodological quality that we endorse. That said, it is 

not the sole or most important one. First and foremost, a set of analyses should appropriately assess a 

conceptual question, which preregistration itself does not ensure; as illustrated by the current dataset, 

two different analyses yield contrasting conclusions. One need not decide which analyses best address 

major issues to appreciate the illustration. As discussed elsewhere (e.g., PsychMAP, 2018), consumers 

may heuristically use preregistration as a cue that the authors of a study have selected the “best” 

analytical strategy, yet doing so entails risk. 

We offer here several reflections on preregistration and related issues.

Robustness. Preregistration constrains which analyses are “confirmatory.” Much 

responsibility, then, is placed on researchers to carefully think through analyses prior to preregistration. 

Even ardent proponents of preregistration can admit that preregistered analyses that inadequately 

address key conceptual questions may deter, not facilitate, proper understanding. Sometimes, authors 

cannot fully anticipate which analyses appropriately address a set of questions. Best analyses may hinge 

on features of the data (presently, illustrated by validation of muscular features). And rather than 

foreseeing a single best strategy, researchers may envision a set of analyses across which robustness may 

Status: in a positive direction for single women and a negative direction for partnered women. DeBruine et al. (2019) argue 
that, because they and Marcinkowska et al. (2018) found no within-woman Progesterone × Relationship Status interactions 
predicting facial masculinity preferences, the between-woman Progesterone interactions likely do not reflect direct effects of 
progesterone. That said, we caution against interpreting a non-significant effect as evidence of “no effect” (e.g., Amrhein, 
Greenland, & McShane, 2019). The issue of whether these interactions are related and due to direct effects of progesterone 
is, in our view, not yet fully resolved. 
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be judged. Preregistration may encourage authors to capture their preplanned hypothesis testing in a 

single analysis, thereby downplaying a role for validity and robustness checks. 

Robustness applies to null results too. Scholars appreciate robustness as a quality of positive 

results (e.g., Arslan et al., in press); indeed, Jünger et al. analyzed their data in a variety of ways. Yet it is 

desirable for null results too. After all, null conclusions reflect absence of evidence for effects, yet null 

results are often interpreted as evidence of absent effects. To justify the latter, the former cannot be 

thin. Presently, Jünger et al. found no interactions between cycle phase and individual male features. 

Yet they did not examine hormonal associations—a priori, analyses that should have greater power 

than the ones they conducted—or moderation by relationship status. Still, they concluded that their 

findings indicate “no shifts in preferences for specific traits”—an explicit claim of evidence for absence, 

not absence of evidence (see also Amrheim et al., 2019). 

Preregistration and up-down thinking in hypothesis-testing. As argued by others (e.g., 

Cumming, 2014; Amrhein et al., 2019), hypothesis-testing cultivates simple up-down thinking: An 

alternative hypothesis is supported or not, favoring a null hypothesis. A certain use of preregistered 

studies may inadvertently reinforce this thinking. In its ideal form, a straightforward preregistered test 

is performed, yielding evidence for an alternative hypothesis or not. If not, that is it; additional 

analyses, not being “confirmatory,” are non-informative with respect to hypothesis-testing and are 

thereby implicitly discouraged19. This thinking is illustrated by Jünger et al.’s null conclusions based on 

particular null findings, as are its risks.

19 Interestingly, from a Bayesian perspective one can argue that the distinction between planned versus post-hoc tests is not 
a substantive one, and thus is not the main point of preregistration (e.g., Dienes, 2016). While the distinction has its uses, it 
should be employed critically while being aware of its scope and limitations.
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Naturally, Type I and Type II errors trade off. If Type I errors are especially aversive, 

additional Type II errors could be warranted. But this reasoning itself assumes simple up-down 

thinking. In fact, scientific inference should not be so simplistic. Evidence typically permits only 

degrees of scientific belief (whether in probability [e.g., Salmon, 1970; Carnap, 1947] or truth-likeness 

[Popper, 1934] terms), a point that applies to individual studies. In conjunction with past findings, it 

informs belief updating (explicitly Bayesian or not); only rarely will it justify definitive up-down 

answers. Those alarmed by the replication crisis rightly deem simplistic hypothesis-testing a bad actor. 

Through publication bias, p-hacking, post-hoc hypothesizing, overinterpretation of findings, and non-

transparency, it inflates Type I errors. The solution, however, should not be similarly simplistic 

thinking, where Type II errors substitute for Type I errors. Rather, cautious and nuanced discussion of 

what findings mean—less definitive and more modest than what simple up-down thinking invites—

should be fostered (Amrhein et al., 2019).

Because it invites simple binary, up-down thinking, Amrhein et al. (2019) propose that the 

concept of statistical significance be abandoned altogether (though, we stress, they do not argue that p-

values are meaningless and useless). Along similar lines, in a recent commentary Gelman (2018) 

recommended that “we should stop labeling replications as successes or failures and instead use 

continuous measures to compare different studies” (p. xxx). Binary labels “get us into trouble with 

their implication that there is some criterion under which a replication can be said to succeed or fail. 

Do we just check whether p < .05? That would be a very noisy rule…” (p. xxx). A focus on effect size 

estimation through aggregation of data over time dispenses with the idea of Type I and Type II errors 
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altogether (though it recognizes potential errors in effect size estimation; Cumming, 2014; Gelman & 

Carlin, 2014). 

Exploration and the total evidence rule. Preregistered, confirmatory analysis is often pitted 

against exploratory analysis, when, in fact, the two are complementary (e.g., Jebb et al., 2017). 

Preregistered analyses address targeted questions. Exploratory analyses permit understanding of data in 

ways unanticipated (e.g., contingent on unexpected results), and may suggest directions for future 

theory development and empirical investigation. Furthermore, they permit examinations of robustness 

not anticipated during preregistration. Though commonly referred to as “exploratory” because they 

were not explicitly preplanned, these examinations may readily be at least as grounded in pertinent 

theory and pertinent bodies of evidence as planned analyses. Carnap (1947) argued that, when applying 

inductive logic to estimate the probability of an event, one should consider the full totality of evidence 

pertinent to the induction. Though philosophers have debated the foundations of the “total evidence” 

principle (e.g., Suppes, 1966), it captures an idea most scientists endorse: In evaluating the strength of 

evidence for an interpretation, one should not ignore any important information pertinent to 

evaluating the interpretation. Unwittingly, however, sharp demarcations between confirmatory and 

exploratory analysis, in conjunction with simple up-down inferential thinking, may encourage 

violations—especially regarding null conclusions. Surely, many analyses Jünger et al. did not conduct 

are still pertinent to their null conclusions: e.g., hormonal associations; moderation by relationship 

status; analyses on Bodily Dominance ratings. Hence, their null conclusions ignored important 

components of the “total evidence” contained in their own data. We are wary of practices that 

encourage these outcomes.
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Broader costs of null conclusions. Individual effects in single studies are rarely empirically 

isolated phenomena. Rather, they fit into, and hence speak to, larger conceptual networks (e.g., Fiedler 

et al., 2012). Here, hormone-associated shifts speak to broader, integrative theories within evolutionary 

psychology. Jünger et al. emphasize this point; they draw theoretical implications of their results, 

arguing that null conclusions weigh against good genes accounts and in favor of motivational priorities 

perspectives on cycle shifts. These arguments could affect the fate of future research paths taken and 

foregone; researchers generally avoid testing theories that are (rightly or wrongly) perceived as “dead.” 

However, integrative ideas with heuristic potential are not easy to come by. There is value to “pulling 

weeds,” that is, discarding false claims. At the same time, premature assertions of the null—especially if 

bolstered by the aura of a preregistered study—can mistakenly “pull” generative stocks, the costs of 

which can be substantial. One can hence argue that, even if most novel integrative ideas are wrong, on 

balance premature null conclusions deter scientific progress (e.g., Fiedler et al., 2012; Fiedler, 2017). 

Naturally, this point is a general one, not specific to the current theoretical context. 

To conclude, it is worth stressing that our analyses are not proof that preference shifts exist. 

Jünger et al.’s conclusions may yet be right. At the same time, Jünger et al.’s data do not constitute solid 

evidence for a null conclusion. Our analyses provide reason to think that relationship status moderates 

shifts in preferences for muscularity, and suggest new hypotheses about preferences for leanness 

(which, in conjunction with muscularity, may reflect physical fitness) and shifts among single women. 

Naturally, more data are needed to address these matters. These conclusions may be modest, and—we 

think—appropriately so. Though motivated by good intentions, some thinking behind 

preregistration, and the deep concerns about non-replicability that drive it, may not encourage such 
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modesty. Rather, for reasons we discuss above, it may inadvertantly foster the approach that led Jünger 

et al. to prematurely draw null conclusions in this particular case.

2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352



                                                                                                          Hormone-associated shifts redux  43

References

Alvarado, L. C., Muller, M. N., Thompson, M. E., Klimek, M., Nenko, I., & Jasienska, G. (2016, 

March). Men's reproductive ecology and diminished hormonal regulation of skeletal muscle 

phenotype: An analysis of between-and within-individual variation among rural Polish men. 

In American Journal of Physical Anthropology (Vol. 159, pp. 78-78). Hoboken NJ: Wiley-

Blackwell.

Amrhein, V., Greenland, S., & McShane, B. (2019). Comment: Retire statistical significance. Nature, 

567, 305-307.

Arslan, R. C., Schilling, K. M., Gerlach, T. M., & Penke, L. (in press). Using 26 thousand diary entries 

to show ovulatory changes in sexual desire and behaviour. Journal of Personality and Social 

Psychology. DOI: 10.1037/pspp0000208

Baird, D. D., Weinberg, C. R., Wilcox, A. J., & McConnaughey, D. R. (1991). Using the ratio of 

estrogen and progesterone metabolites to estimate the day of ovulation. Statistics in Medicine, 10, 

255-266.

Bates, D., Kleigl, R., Vashisth, S., & Baayen, H. (2015) Parsimonious linear models. Available from 

arXiv:1506.04967 (stat.ME).

Carnap, R. (1947). Meaning and necessity. Chicago, IL: University of Chicago Press.

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25, 7-29. 

Debruine, L. M., Hahn, A. C., & Jones, B. C. (2019). Does the interaction between partnership status 

and average progesterone level predict women’s preferences for facial masculinity? Hormones and 

Behavior, 107, 80-82. 

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408



                                                                                                          Hormone-associated shifts redux  44

Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical 

Psychology, 72, 78-89.

Dinh, T., Pinsof, D., Gangestad, S. W., & Haselton, M. G. (2017). Cycling on the fast track: Ovulatory 

shifts in sexual motivation as a proximate mechanism for regulating life history strategies. 

Evolution and Human Behavior, 38, 685-694. 

Dixson, A. (2013). Primate sexuality: Comparative studies of the prosimians, monkeys, apes, and 

humans.: Oxford University Press.

Dunson, D. B., Baird, D. D., Wilcox, A. J., & Weinberg, C. R. (1999). Day-specific probabilities of 

pregnancy based on two studies with imperfect measures of ovulation. Human Reproduction, 14, 

1835-1839.

Dunson, D. B., Weinberg, C. R., Baird, D. D., Kesner, J. S., & Wilcox, A. J. (1999). Assessing human 

fertility assessing several markers of ovulation. Statistics in Medicine, 20, 965-978.

Ellison, P. T. (1993). Measurements of salivary progesterone. Annals of the New York Academy of 

Sciences, 694, 161-176.

Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15(3), 

342-351. 

Emery Thompson, M., & Muller, M. N. (2016). Comparative perspectives on human reproductive 

behavior. Current Opinion in Psychology, 7, 61-66.

Fiedler, K. (2017). What constitutes strong psychological science? The (neglected) role of diagnosticity 

and a priori theorizing. Perspectives on Psychological Science, 12, 46-61.

2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464



                                                                                                          Hormone-associated shifts redux  45

Fiedler, K., Kutzner, F., & Krueger, J. I. (2012). The long way from α-error control to validity proper: 

Problems with a short-sighted false-positive debate. Perspectives on Psychological Science, 7, 661-

669.

Frederick, D. A. & Haselton, M. G. (2007). Why is muscularity sexy? Tests of the fitness-indicator 

hypothesis. Personality and Social Psychology Bulletin, 33, 1167-1183.

Gangestad, S. W., Garver-Apgar, C. E., Simpson, J. A., & Cousins, A. J. (2007). Changes in women’s 

mate preferences across the ovulatory cycle. Journal of Personality and Social Psychology, 92, 151–

163.

Gangestad, S. W., Grebe, N. M., Gildersleeve, K., & Haselton, M. G. (2018a). Are ovulatory shifts in 

women’s mate preferences robust? Selection models say it depends. Manuscript under revision.

Gangestad, S. W., Dinh, T., Grebe, N. M., Gildersleeve, K., Emery Thompson, M., & Haselton, M. G. 

(2018a). A replication study examining effects of cycle phase and hormonal indicators on two 

female mate preferences. Preregistration posted on Open Science Framework, 

https://osf.io/4x7ub/?view_only=3651613e41ea4e0c8d8abc97cc6cfc3c 

Gelman, A. (2018). Don’t recognize replications as successes or failures. Behavioral and Brain Sciences, 

41. doi:10.1017/S0140525X18000638, e128

Gelman, A., & Carlin, J. B. (2014) Beyond power calculations: Assessing Type S (sign) and Type M 

(magnitude) errors. Perspectives on Psychological Science, 9, 641-651.

Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons can be a 

problem, even when there is no “fishing expedition" or “p-hacking" and the research hypothesis 

2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520



                                                                                                          Hormone-associated shifts redux  46

was posited ahead of time. URL: 

http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf.

Gildersleeve, K., Haselton, M. G., & Fales, M. R. (2014a). Do women’s mate preferences change across 

the ovulatory cycle? A meta-analytic review. Psychological Bulletin, 140, 1205-1259.

Gildersleeve, K., Haselton, M. G., & Fales, M. R. (2014b). Meta-analyses and p-curves support robust 

cycle shifts in women’s mate preferences: Reply to Wood and Carden (2014) and Harris, Pashler, 

and Mickes (2014). Psychological Bulletin, 140, 1272-1280.

Grebe, N. M., Gangestad, S. W., Garver-Apgar, C. E., & Thornhill, R. (2013). Women’s luteal-phase 

sexual proceptivity and the functions of extended sexuality. Psychological Science, 24, 2106-2110. 

Grebe, N. M., Emery Thompson, M., & Gangestad, S. W. (2016). Hormonal predictors of women’s in-

pair and extra-pair sexual attraction in natural cycles: Implications for extended sexuality. 

Hormones and Behavior, 78, 211-219. 

Harris, C. R., Pashler, H., & Mickes, L. (2014). Elastic analysis procedures: An incurable (but 

preventable) problem in the fertility effect literature. Comment on Gildersleeve, Haselton, and 

Fales (2014). Psychological Bulletin, 14, 1260-1264.

Havlicek, J., Roberts, S. C., & Flegr, J. (2005). Women’s preference for dominant male odour: Effects 

of menstrual cycle and relationship status. Biology Letters, 1, 256–259.

Jebb, A. T., Parrigon, S., & Woo, S. E. (2017). Exploratory data analyses as a foundation of inductive 

research. Human Resource Management Review, 27, 265-276.

2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576



                                                                                                          Hormone-associated shifts redux  47

Jones, B. C., Hahn A. C., Fisher, C. Wang, H. Kandrik, M., & DeBruine, L. M. (2018a). General sexual 

desire, but not desire for uncommitted sexual relationships, tracks changes in women’s hormonal 

status. Psychoneuroendocrinology.

Jones, B. C., Hahn A. C., Fisher, C. Wang, H. Kandrik, M. Han C., Fasolt, V., Morrison, D. K. Lee, A., 

Holzleitner, I. J. Roberts, S. C., Little, A. C., & DeBruine, L. M. (2018b). Women’s preferences for 

facial masculinity are not related to their hormonal status. Psychological Science.

Jones, K. A. (1996). Summation of basic endocrine data. In Gass, G. A., Kaplan, H. M. (Eds.), 

Handbook of Endocrinology, Volume 1, second edition, pp. 2-42. Boca Raton FL: CRC Press.

Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social 

psychology: A new and comprehensive solution to a pervasive but largely ignored problem. 

Journal of Personality and Social Psychology, 103, 54-69.

Jünger, J., Kordsmeyer, T. L., Gerlach, T. M., & Penke, L. (2018). Fertile women evaluate male bodies 

as more attractive, regardless of masculinity. Evolution and Human Behavior, 39, 412-

423. doi: 10.1016/j.evolhumbehav.2018.03.007

Jünger, J., & Penke, L. (2016).  The effects of ovulatory cycle shifts in steroid hormones on female mate 

preferences for body masculinity, voice masculinity and social dominant behavior. Preregistration, 

Open Science Framework, https://osf.io/u3y7a/.   

Kordsmeyer, T., Hunt, J., Puts, D.A., Ostner, J., & Penke, L. (2018). The relative importance of intra- 

and intersexual selection on human male sexually dimorphic traits. Evolution and Human 

Behavior. 

2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632

https://doi.org/10.1016/j.evolhumbehav.2018.03.007


                                                                                                          Hormone-associated shifts redux  48

Kreft, I. G. G., de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in 

hierarchical linear models. Multivariate Behavioral Research, 30, 1–21.

Kutner, M. A., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models, 4th edition. New 

York: McGraw-Hill/Irwin.

PsychMAP. (2018). In Facebook [Group page]. Retrieved May 25, 2018, from 

https://www.facebook.com/groups/psychmap/permalink/580032225707037/

Lindsay, C. S. (2017). Editorial: Sharing data and materials in Psychological Science. Psychological 

Science, 28, 699-702.

Lipson, S. F., & Ellison, P. T. (1996). Comparison of salivary steroid profiles in naturally occurring 

conception and non-conception cycles. Human Reproduction, 11, 2090-2096. 

Little, A. C., Jones, B. C., & Burriss, R. . (2007). Preferences for masculinity in male bodies change 

across the menstrual cycle. Hormones and Behavior, 51, 633-639.

Lynch, K. E., Mumford, S. L., Schliep, K. C., Whitcomb, B. W., Zarek, S. M., Pollack, A. Z., et al. 

(2014). Assessment of anovulation in eumenorrheic women: Comparison of ovulation detection 

algorithms. Fertility and Sterility, 102, 511-518.

Marcinkowska, U. M., Kaminski, G., Little, A. C., & Jasienska, G. (2018). Average ovarian hormone 

levels, rather than daily values and their fluctuations, are related to facial preferences among 

women. Hormones and Behavior, 102, 114-119.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., Bates, D. (2017). Balancing Type I error and power 

in linear models. Journal of Memory and Language, 94, 305-315.

2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688



                                                                                                          Hormone-associated shifts redux  49

Maxwell SE, Lau MY, Howard GS. 2015. Is psychology suffering from a replication crisis? What does 

“failure to replicate” really mean? American Psychologist, 70, 487–98

Millar, M. (2013). Menstrual cycle changes in mate preferences for cues associated with genetic quality: 

The moderating role of mate value. Evolutionary Psychology, 11, 18–35

Nestler, S., & Back, M. D. (2013). Applications and extensions of the lens model to understand 

interpersonal judgments at zero acquaintance. Current Directions in Psychological Science, 22, 

374-379.

Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 

349. DOI: 10.11.1126/science.aac4716

Pillsworth, E.G., & Haselton, M.G. (2006). Women's sexual strategies: the evolution of long-term 

bonds and extra-pair sex. Annual Review of Sex Research, 17, 59–100. 

Popper, K. R., 1963, Conjectures and Refutations, London: Routledge.

Roney, J. R., Simmons, Z. L. (2013). Hormonal predictors of sexual motivation in natural menstrual 

cycles. Hormones and Behavior, 63, 636-645.

Roney, J. R., & Simmons, Z. L. (2016). Within-cycle fluctuations of progesterone negatively predict 

changes in both in-pair and extra-pair desire among partnered women. Hormones and Behavior, 

81, 45-52. 

Roney, J. R., & Simmons, Z. L. (2017). Ovarian hormone fluctuations predict within-cycle shifts in 

women’s food intake. Hormones and Behavior, 90, 8-14. 

2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744



                                                                                                          Hormone-associated shifts redux  50

Salmon, W. (1970). Bayes theorem and the history of science. In R. Stuewer (Ed.), Historical and 

philosophical perspectives of science (pp. 68-86). Minneapolis, MN: University of Minnesota 

Press.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology undisclosed 

flexibility in data collection and analysis allows presenting anything as significant. Psychological 

Science, 22, 1359– 1366.

Sollberger, S., & Ehlert, U. (2016). How to use and interpret hormone ratios. 

Psychoneuroendocrinology, 63, 285-297.

Suppes, P. (1966). Probabilistic inference and the concept of total evidence. In J. Hintikka & P. Suppes, 

Aspects of inductive logic, pp. 49-65. Amsterdam: North-Holland Publishing Co.

Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between 

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

Psychological Methods, 17, 228-243.

Wallen, K. (2013). Women are not as unique as thought by some: Comment on “Hormonal predictors 

of sexual motivation in natural menstrual cycles,” by Roney and Simmons. Hormones and 

Behavior, 63(4), 634-635. doi:10.1016/j.yhbeh.2013.03.009

Welling, L. L., Jones, B. C., DeBruine, L. M., Conway, C. A., Smith, M. L., Little, A. C., Feinberg, D. 

R., Sharp, M. A., & Al-Dujaili, E. A. (2007). Raised salivary testosterone in women is associated 

with increased attraction to masculine faces. Hormones and Behavior, 52, 156-161.

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800



                                                                                                          Hormone-associated shifts redux  51

Wetzels, L. C. G., & Hoogland, H. J. (1982). Relation between ultrasonographic evidence of ovulation 

and hormonal parameters: Luteinizing hormone surge and progesterone rise. Fertility and 

Sterility, 37, 336-341.

West, S. G., Ryu, E., Kwak, O-M., & Chan, H. (2011). Multilevel modeling: Current and future 

applications in personality research. Journal of Personality, 79, 1-50.

Wood, W., Kressel, L., Joshi, P. D., & Louie, B. (2014). Meta-analysis of menstrual cycle effects on 

women’s mate preferences. Emotion Review, 6, 229–249.

2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856



                                                                                                          Hormone-associated shifts redux  52

Table 1

Jünger et al.’s Data: Sexual Attractiveness and Bodily Dominance in Relation to Male Features

Predicting Sexual      Associations with
    Attractiveness      Bodily Dominance

  γ / SE t p r r w BMI controlled
BMI  -.78/.2 -3.79 <.001
Strength   .64/.20 3.17 0.002 .38*** .26*

BMI  -1.00/.29  -3.78 0.001
Upper Arm Circumference   .65/.29 2.21 0.03 .51*** .35**

BMI  -0.59/.23 -2.54 0.013
Shoulder-to-Chest Ratio  -0.15/.23 -0.67 0.504 -.37*** -0.2

BMI  -.44/.21 -2.10 0.039
Shoulder-to-Hip Ratio .16/.21 0.78 0.438 0.00 0.18

BMI  -.50/.20 -2.51 0.014
Upper-to-Lower Torso Ratio   .06/.20     0.33 0.741 0.08 0.14

BMI  -.50/.20 -2.57 0.012
Log Baseline Testosterone   .16/.19   0.82 0.417 0.07 0.08

    ↑________________________________________↑
                r between γ and partial r = .87

BMI
Height -0.08 -0.2

BMI  -1.08/0.2 -4.35 <.001
Factor: Strength/Arm Circ    .99/.25  3.43 0.001 .54*** .40**

BMI  -
0.44/0.21 -2.08 0.041

Factor: SCR/SHR   .18/.23     0.78 0.438 0.07 0.11

BMI  -0.48/0.2 -2.43 0.017
Factor: Torso Ratio   .19/.24   0.73 0.466 0.08 0.17
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Notes. Multilevel regression predicting sexual attractiveness from BMI and male feature. BMI and all 
features z-scored. Observations cross-classified by female raters (N = 157) and male targets (N = 80). 
Random intercepts for both modeled. Random slopes, across women, modeled for BMI and male 
features. Covariances between intercepts and slopes modeled. df for t = 77 to 83. N of male targets for 
correlations = 80. *** p < .001   ** p < .01  * p < .05. Confidence intervals are not explicitly reported. 
However, they can be very closely approximated with γ ± 2 × SE.

Note that, as γ for male feature increases, γ for BMI becomes more negative – likely because, when 
muscularity is controlled for, BMI becomes a “purer” measure of adiposity, which is unattractive.
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Table 2

Key Differences Between Our Analyses and Those of Jünger et al.

Jünger et al.’s analyses  Our analyses

Purported drivers of shift Estimated Cycle Phase Measured hormone levels (notably,
entered in analyses ln(E/P), as well as ln(E) and ln(P))

Male muscular features 6 features plus height A single composite, with  
entered simultaneously components empirically vetted

Control for BMI confound Controlled for main effect Controlled for confounding BMI
interactions 

Test of moderation of Did not test these Explicitly tested the ln(E/P) × 
preference shifts by interactions Strength/Muscularity × 
relationship status Relationship Status interaction

Notes. The differences listed are primary ones. We note several additional differences: (a) Jünger et al. 
performed follow-up analyses (though not examining preference shifts) using raw hormone levels, not 
log-transformed levels; we performed robustness analyses with raw hormone levels that yielded the key 
ln(E/P) × Strength/Muscularity × Relationship Status interaction (see Table S10). (b) We eliminated 
some outlying hormone values through visual inspection; we performed robustness analyses with the 
full dataset that yielded the same key results (see Table S3). (c) We did not control for male age in the 
primary analyses; we performed robustness analyses including age that yielded the same key results (see 
Table S7). (d) We controlled for women’s testosterone level (log-transformed) in primary analyses, 
whereas Jünger et al. did not; we also performed robustness analyses without controlling for ln(T) that 
yielded the same key results. (e) We included random slopes in our mixed model analyses, whereas 
Jünger et al. did not.
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Table 3

Our Analyses: An Initial Full Model Plus Additional Analyses Examining Robustness

A full model (Table 4). We begin with a full model that follows from our overarching rationale. It uses 
ln(E/P) as a primary hormonal variable of interest, which has two orthogonal components, woman-
mean and within-woman. The model also includes ln(T) as a control variable, which also has two 
orthogonal components. Strength/Muscularity is used as a marker of male muscularity. BMI is entered 
as a control variable. Relationship status is entered as a potential moderator. The primary effects of 
interest are within-woman ln(E/P) × Strength/Muscularity and within-woman ln(E/P) × 
Strength/Muscularity × Relationship Status. To control for preference effects of T and the 
confounding of preferences for BMI and Strength/Muscularity, however, 2-way interaction and 3-way 
interaction terms involving these variables must also be entered. 

A model removing ln(T) (Table 4). We ran the same model as above, but removing ln(T) and all 
interactions. This analysis examines whether a simplified model not controlling for T yields the same 
effects.

Grand-centered mean analysis (Table 4). An analysis that grand-mean centers hormone values captures 
the total hormonal effects, both within and across women. 

Strength/Muscularity residual scores, with BMI partialled out (Table 4). An alternative to entering 
BMI and its interactions is to regress Strength/Muscularity on BMI and use residual scores as a 
measure of Strength/Muscularity independent of BMI. We report this analysis using the grand-mean 
centered analysis approach described above.

Follow-up analyses examining separate contributions of ln(E) and ln(P) (Table 5). In these analyses, 
ln(T) is dropped, as (a) its inclusion introduces additional terms, and (b) robustness analyses described 
above show that its exclusion does not meaningful change key results.

Estimation of effects specific to partnered and single women (Table 6). In light of a ln(E/P) × 
Strength/Muscularity × Relationship Status effect, we follow up with analyses that separately examine 
the ln(E/P) × Strength/Muscularity effect within partnered and single women separately, using the 
grand-mean centered analysis described above. As well, we provide, for partnered women, model-based 
estimates of associations of ln(E/P) with sexual attraction to highly muscular and unmuscular men 
(95th and 5th percentile on Strength/Muscularity, respectively). 

The SOM presents additional robustness analyses. The main text presents additional analyses using 
Bodily Dominance and a composite measure of Strength/Formidability as separate measures of 
muscularity (Table 7) and cycle phase as a potential driver of preference shifts (Table 9).
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Table 4

Results of Multilevel Regression Analyses on Jünger et al.’s Data: Predictors of Sexual Attractiveness

  Full 
Model

    T 
removed 

GM 
centered 

E/Pb  

With 
residual 

S/M
  γ / SE t p   γ / SE  t  p   γ / SE t p   γ / SE t p

BMI  -1.11/0.25 -4.48 <.001  -1.11/0.25 -4.46 <.001  -1.10/0.25 -4.38 <.001
Strength/Muscularity (S/M)   .86/.25 3.51 <.001   .87/.25 3.50 <.001   .86/.25 3.47 <.001   .63/.19 3.34 0.001
Relationship Status  -0.01/0.1 -0.08   .25/.08 3.14 0.002   .11/.10 1.10   .31/.07 4.35 <.001
wwa E/P .06/.04 1.58 0.117   .06/.04 1.91 0.059   .07/.04 1.74 0.084   .07/.04 1.87 0.064
ww T  -0.04/0.04 -0.87  -.06/.07 -0.77  
mean E/P   -.04/.05 -0.78   .08/.08 0.96   
mean T   .07/.08 0.79

ww E/P x Relationship Status   .02/.06 0.39   .01/.06 0.13  -.02/.07 -0.37   -.03/.06 -0.57
ww T x Relationship Status  -0.22/0.08 -2.71 0.008    -.37/.10 -3.57 <.001
mean E/P x Relationship Stat   .09/.10 0.82  -.11/.07 -1.67 0.094
mean T x Relationship Status  -0.11/0.11 -0.93  
BMI x Relationship Status  -0.09/0.06 -1.64 0.101   -.08/.06 -1.43 0.153   -.03/.05 -0.55
BMI x ww E/P  -0.01/0.01 -0.54  -.00/.01 -0.44   -.01/.01 -0.65
BMI x ww T   .02/.01 1.58 0.114   .03/.02 2.10 0.036
BMI x mean E/P  -0.02/04 -0.58  -.02/.04 -0.47
BMI x mean T   .06/.04 1.50 0.135
S/M x Relationship Status   .03/.05 0.70   .03/.05 0.57      .03/.04 0.61   .02/.03 0.55
S/M x ww E/P   -.00/.01 -0.29  -.00/.01 -0.34   -.00/.01 -0.15  -.00/.01 -0.34
S/M x ww T  -0.01/0.01 -1.09  -.02/.02 -1.52 0.129   
S/M x mean E/P   .01/.03 0.28   .00/.02 0.13   
S/M x mean T  -0.03/0.03 -1.13
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Rel Stat x BMI x ww E/P  -.02/.02 -1.22 0.222   -.02/.02 -1.09  -.04/.02 -1.78 0.074
Rel Stat x BMI x ww T   .03/.02 1.45 0.146   .02/.03 0.56
Rel Stat x BMI x mean E/P  -.16/.05 -3.26 0.001  -.16/.05 -3.24 0.001
Rel Stat x BMI x mean T  -0.05/0.05 -1.04
Rel Stat x S/M x ww E/P   .05/.02 2.47 0.014   .05/.02 2.34 0.019  .06/.02 2.78 0.005   .04/.02 2.65 0.008
Rel Stat x S/M x ww T  -0.02/0.02 -1.16 0.246    -.00/.03 -0.12  
Rel Stat x S/M x mean E/P   .06/.04 1.34 0.179 .06/.04 1.42 0.155   
Rel Stat x S/M x mean T   .05/.04 1.09   

Notes. All hormone measures log-transformed. Hence, ln(E/P) = ln(E) - ln(P). All quantitative predictors z-scored. Relationship status effect 
coded: single = -.5, partnered = .5. Observations cross-classified by female raters (N = 157), male targets (N = 80), and their interaction. 
Random intercepts for all are modeled. Random slopes, across women, modeled for BMI, Strength/Muscularity, and within-woman hormone 
measures. Inclusion of random slope interactions and covariances selected through model Bayesian Information Criterion fit statistic. Random 
components and fit statistics reported in Table S2, SOM. Effects of primary theoretical interest bolded. Blank rows separate main effects, two-
way interactions, and three-way interactions. P-values < .05 bolded. P-values < .10 in italics. P-values > .25 not shown. Confidence intervals are 
not explicitly reported. However, they can be calculated with γ ± 2 × SE.

aww = within-woman centered.

bGrand-mean centered hormone measures reported in this table in rows for within-woman hormone measures.

cStrength/Muscularity scores regressed on BMI to remove confounding with BMI. Grand-mean centered hormone measures reported in rows 
for within-woman hormone measures. 
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Table 5

Results of Multilevel Regression Analyses: Predictors of Sexual Attractiveness 
Separating Estradiol and Progesterone

Full 
Model

With residual 
S/M

  γ / SE t p   γ / SE t p
BMI  -1.11/0.25 -4.42 <.001
Strength/Muscularity (S/M)   .86/.25 3.49 <.001   .64/.19 3.31 0.001
Relationship Status  .02/.10 1.67 0.096   .16/.10 1.67 0.095
E  -.10/.08 -1.34 0.181    -.10/.08 -1.35 0.181
P  -.07/.03 -2.22 0.029  -.07/.03 -2.22 0.029

E x Relationship Status    -.13/.12 -1.08   -.03/.12 -1.08
P x Relationship Status  .04/.05 0.68  .04/.05 0.69
BMI x Relationship Status  -.03/.05 -0.52
BMI x E  -.02/.01 1.41 0.159
BMI x P   .04/.06 0.91
S/M x Relationship Status   .03/.04 0.63   .00/.05 0
S/M x E   -.02/.01 -1.58 0.114  -.01/.01 -1.46 0.145
S/M x P  -.00/.01 -0.25  -.00/.01 -0.19   

Rel Stat x BMI x E  -.03/.03 1.2 0.229
Rel Stat x BMI x P   .05/.02 2.29 0.022
Rel Stat x S/M x E   .01/.03 0.38   .00/.02 0.23
Rel Stat x S/M  P  -.06/.02 -2.75 0.006  -.04/.02 -2.74 0.006

Notes. Hormone values log-transformed and grand-mean centered. See also notes, Table 4. See S6 for 
full model analyses. 

aStrength/Muscularity scores regressed on BMI to remove confounding with BMI. 
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Table 6

Results of Multilevel Regression Analyses: Predictions for Single and Partnered Women 

Single  Partnered 
   ___________________    ______________________________________________________________

   Mean-Centered S/M     Mean-Centered S/M     S/M at 5th 
percent S/M at 95th percent

  γ / SE t p   γ / SE  t  p   γ / SE t p   γ / SE t p
Analysis with ln(E/P)
BMI  -1.09/.25 -4.32 <.001  -1.11/.25 -4.44 <.001
Strength/Muscularity (S/M) .85/.25 3.42 0.001 .87/.25 3.52 <.001
E/P .08/.05 1.63 0.106 .06/.05 1.12 .02/.06 0.27 .11/.06 1.82 0.070
T .13/.09 1.49 0.139  -.24/.09 -2.72 0.007
BMI x E/P .01/.02 0.79  -.03/.02 -1.74 0.083
BMI x T .02/.02 1.1 .04/.02 1.97 0.049
S/M x E/P  -.03/.02 -2.05 0.041 .03/.02 1.87 0.061
S/M x T  -.02/.02 -0.98  -.03/.02 -1.21 0.226

Analysis with ln(E) and 
ln(P)
E  -.04/.09 -0.42  -.17/.10 -1.68 0.095  -.14/.10 -1.30 0.195  -.20/.11 -1.90 0.060
P  -.09/.04 -2.19 0.030  -.05/.05 -1.21 0.229  -.00/.05 -0.08  -.11/.05 -2.14 0.033
BMI x E .00/.02 0.16 .03/.02 1.78 0.075
BMI x P  -.02/.02 -0.95 .04/.02 2.31 0.021
S/M x E  -.02/.02 -1.45 0.148  -.02/.02 -0.83
S/M x P .03/.02 1.73 0.084  -.03/.02 -2.17 0.030

Notes. Hormone values log-transformed and grand-mean centered. All quantitative predictors with s = 1. For Single estimates, relationship 
status coded Single = 0, Partnered = 1; for Partnered estimates, Single = 1, Partnered = 0.  Interactions involving relationship status are 
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redundant with Tables 3 and 4 and are not shown. For analysis with ln(E) and ln(P), BMI and S/M main effects are not repeated. S/M at 5th 
percent = zero-centered at 5th percentile. S/M at 95th percent = zero-centered at 95th percentile. See S2 in SOM for discussion of random 
components. Effects of primary theoretical interest bolded. P-values < .05 bolded. P-values < .10 in italics. P-values > .25 not shown. 
Confidence intervals are not explicitly reported. However, they can be calculated with γ ± 2 × SE.
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Table 7

Results of Multilevel Regression Analyses: Predictors of Attractiveness with 
Bodily Dominance and Strength/Formidability

                     
Bodily 
Dominance Strength/Formidability

  γ / SE t p   γ / SE t p
Analysis using E/P
BMI  -1.06/0.15 -7.18 <.001  -1.47/.21 -7.06 <.001
BD / SF  1.39/.15 9.24 <.001  1.43/.21 6.94 <.001
Relationship Status  .10/.10 1.04   .11/.10 1.10
E/P .07/.04 1.77 0.079    .07/.04 1.74 0.084
T  -.06/.07 -0.77  -.06/.04 -0.77
Relationship Status x E/P  -.03/.07 -0.42  -.02/.07 -0.37
Relationship Status x T    -.38/.10 -3.59 <.001    -.37/.10 -3.58 <.001
BMI x Relationship Status  - .04/.05 -0.92  -.06/.06 -1.02
BMI x E/P  -.00/.01 -0.02 .01/.01 0.09
BMI x T  .02/.01 1.40 0.162 .03/.02 1.78 0.075
BD/SF x Relationship Status   .09/.05 1.73 .06/.05 1.14
BD/SF x E/P    -.02/.01 -2.36 0.018  -.01/.01 -1.29 0.196
BD/SF x T   -.00/.01 -0.07  -.02/.02 -1.01
Rel Stat x BMI x E/P  -.02/.02 -1.17 0.24  -.05/.02 -0.19   
Rel Stat x BMI x T .01/.03 0.55 .02/.03 0.63
Rel Stat x BD/SF x E/P .06/.02 3.25 0.001 .08/.02 3.54 <.001
Rel Stat x BD/SF x T   .00/.03 0.15  -.01/.03 -0.21

Analysis entering E and P 
separatelya

E  -.10/.08 -1.32 0.188  -.10/.08 1.34 0.181
P  -.07/.03 -2.24 0.027  -.07/.03 -2.22 0.029
Relationship Status x E  -.13/.11 -1.08  -.13/.12 -1.08
Relationship Status x P .04/.06 0.75 .04/.06 0.68
BMI x E .02/.01 1.45 0.147 .02/.01 1.81 0.071
BMI x P .00/.01 0.32 .00/.01 0.31
BD/SF x E  -.03/.01 -2.68 0.007  -.03/.01 -2.29 0.022
BD/SF x P .01/.01 1.52 0.130 .01/.01 0.63
Rel Stat x BMI x E .03/.02 1.54 0.123 .03/.03 1.09
Rel Stat x BMI x P .03/.02 1.78 0.074 .06/.02 2.72 0.007
Rel Stat x BD/SF x E .01/.02 0.5 .01/.03 0.52
Rel Stat x BD/SF x P  -.06/.02 -3.16 0.002  -.07/.02 -3.47 <.001
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Notes. All hormone measures log-transformed and grand-mean centered. See notes, Table 3. BD = 
Bodily Dominance. SF = Strength/Formidability. Effects of primary interest bolded. P-values < .05 
bolded. P-values < .10 in italics. P-values > .25 not shown. Confidence intervals are not explicitly 
reported. However, they can be calculated with γ ± 2 × SE. See Tables S14-S19 for full model analyses 
and effects for single and partnered women separately. 

a For analyses entering E and P separately, for sake of brevity we do not repeat effects for main effects 
and interactions without E or P, though these terms were included; see the analysis using E/P. 
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Table 8

Summary results of multilevel regression analyses: hormone level × strength/muscularity × relationship status interaction effects

  Full Model     T 
removed 

GM 
centered 

E/Pb  

With 
residual 

S/M
  γ / SE t p   γ / SE  t  p   γ / SE t p   γ / SE t p

Hormonal predictor: ln(E/P) 
 Primary models (from Table 3, main text)

  .05/.02 2.47 0.014   .05/.02 2.34 0.019  .06/.02 2.78 0.005   .04/.02 2.65 0.008
 Models without between-woman hormone terms (from 
Table S5)

.05/.02 2.47 0.013 .05/.02 2.34 0.019
 Models controlling for male age main effect and interactions (from 
Table S7)

  .05/.02 2.51 0.012   .05/.02 2.37 0.018  .06/.02 2.82 0.005   .04/.02 2.69 0.007
 Models without random slope terms 

  .05/.02 2.36 0.018   .05/.02 2.28 0.023  .06/.02 2.63 0.008  .04/.02 2.63 0.008
 Models replacing male strength/muscularity composite with strength/muscularity factor scores 
(from Table S8)

  .06/.02 2.62 0.009   .06/.02 2.47 0.014  .07/.03 2.88 0.004   .04/.02 2.75 0.006
 Models replacing male strength/muscularity composite with strength/muscularity/height factor scores 
(from Table S9)

  .05/.02 2.21 0.027   .05/.02 2.08 0.037  .06/.02 2.66 0.008   .04/.02 2.52 0.012
 Models replacing male strength/muscularity composite with bodily dominance ratings (from Tables 
6, S14)

  .05/.02 3.28 0.013  -.12/.04 3.15 0.002 .06/.02 3.25 0.001 .05/.02 3.14 0.002
 Models replacing male strength/muscularity composite with strength/formidability measure (from 
Tables 6, S15)
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  .07/.02 3.39 0.001 .06/.02 3.24 0.001 .08/.02 3.54 <.001 .05/.02 3.41 0.001
Hormonal predictors: estradiol and progesterone entered separately 
 Ln(E) and ln(P) entered as hormonal predictors (from Tables 4, S6)

E: .01/.02 0.37 .01/.02 0.31   .01/.03 0.38   .00/.02 0.23
 P:-.05/.02 -2.43 0.015  -.05/.02 -2.34 0.019  -.06/.02 -2.75 0.006  -.04/.02 -2.74 0.006

 Raw levels of E and P entered as hormonal predictors (from Table S10)
E: .01/.02 -0.53  -.01/.02 -0.66  -.02/.03 -0.61  -.01/.02 0.31

 P:-.05/.02 -2.30 0.021  -.05/.02 2.32 0.021  -.05/.02 -2.29 0.022  -.04/.02 -2.36 0.018

Notes. Ln(E/P) = ln(E) - ln(P). Effects are hence an function of and additive linear composite of ln(E) and ln(P). All quantitative predictors z-
scored. Relationship status effect coded: single = -.5, partnered = .5. Observations cross-classified by female raters (N = 157), male targets (N = 
80), and their interaction. Random intercepts for all are modeled. Random slopes, across women, modeled for BMI, Strength/Muscularity, 
and within-woman hormone measures, except where noted. Inclusion of random slope interactions and covariances selected through model 
Bayesian Information Criterion fit statistic. Random components and fit statistics reported in Table S2, SOM. P-values < .05 bolded. 
Confidence intervals are not explicitly reported. However, they can be calculated with γ ± 2 × SE.

In the Full Model and T-removed model, hormone levels are centered within-woman. For the GM hormones and With residual S/M models, 
hormone levels are grand-mean centered. For the Model with residual S/M scores, the male feature (e.g., Strength/Muscularity) is regressed on 
BMI to remove confounding with BMI. 

3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556



Table 9

Results of Multilevel Regression Analyses: Predictors of Sexual Attractiveness with Cycle Phase

 γ / SE t p
BMI   -1.10/.25 -4.39 <.001
Strength/Muscularity (S/M) 1.00/.29 3.49 <.001
Relationship Status .20/06 -3.54 <.001
Cycle Phase .07/.04 2.09 0.037
Phase x Relationship Status .12/.06 1.95 0.051
BMI x Relationship Status  -.03/.05 -0.61
BMI x Phase  -.02/.02 -0.28
S/M x Relationship Status .03/.05 0.60
S/M x Phase .00/.02 0.18
Rel Stat x BMI x Phase  -.02/.04 -0.57
Rel Stat x S/M x Phase .07/.05 1.59 0.111

Notes. All quantitative predictors z-scored. Relationship status effect coded: single = -.5, partnered = .5. 
Phase effect codes: -.5 = luteal; .5 = peri-ovulatory. Observations cross-classified by female raters (N = 
157), male targets (N = 80), and their interaction. Random intercepts for all are modeled. Random 
slopes, across women, modeled for BMI, Strength/Muscularity, and within-woman hormone 
measures. Inclusion of random slope interactions and covariances selected through model Bayesian 
Information Criterion fit statistic. Random components and fit statistics reported in Table S24 of 
SOM. See text and SOM for additional discussion and models. Confidence intervals are not explicitly 
reported. However, they can be calculated with γ ± 2 × SE.
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Figure Caption

Figure 1. Model-based estimates of the association between the log of E/P when Strength/Masculinity 

is at the 5th percentile and 95th percentile for partnered women (top panel) and single women (bottom 

panel). Shaded areas represent 95% confidence intervals.
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Figure 1.
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